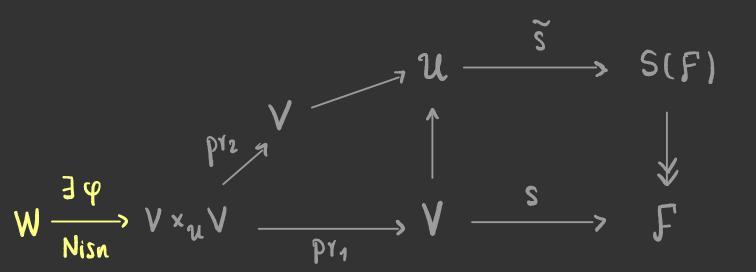
I. <u>Al1 - connected components</u> (<u>A refinement of Asok - Morel's</u> [Balwe - Hogadi - Sawant] <u>theorem</u>)

Theorem 1:
$$F \in Shv_{Nis}(Sm_k) \hookrightarrow \Delta^{op} Shv_{Nis}(Sm_k)$$

 $S(F')$ sheaf of A^1 -chain connected components
Then:
 $L(F) := \lim_{n} S^n(F)$ is A^1 invariant
 n
 If Morel's conjecture is true $(\pi_0^{A^1}(x))$ is A^1 -invariant)
for F , then
 $\pi_0^{A^1}(F) \xrightarrow{\sim} L(F)$

Recal: Sections of S(F): $pr_1, pr_2: V \times_u V \longrightarrow V$ UE SMK, $S(F)(U) \simeq \int SEF(V) / V \rightarrow U$ finite Nisnevich cover s.t $pr_i^*(s)$ are $Al^1 - chain$ homotopic after restriction to a Nisneulch cover of VX4V.



<u>Remark</u>:

- If t₁, t₂ are Al¹-chain homotopic, they map to the same element of S(F)(u).
- If $t_1, t_2 \in F(u)$ sit they map to the same element in S(F)(u)then $\exists v \xrightarrow{Nis} u$ sit $t_1|_v$ and $t_2|_v$ are Al^1 -chain homotopic.

The description of sections of S(F) applied to At'_u gives rise to At^1 -ghost homotopies:

Def":
$$F \in Shv_{Nis}(Sm_k)$$
, $U \in Sm_k$. An All-ghost
homotopy consist of:

$$H:=\left(\begin{array}{ccc} V & \longrightarrow & Al_{\mathcal{U}}^{1}, & W & \longrightarrow & V \times_{Al_{\mathcal{U}}^{1}} V, & h, & h^{W} \end{array}\right)$$

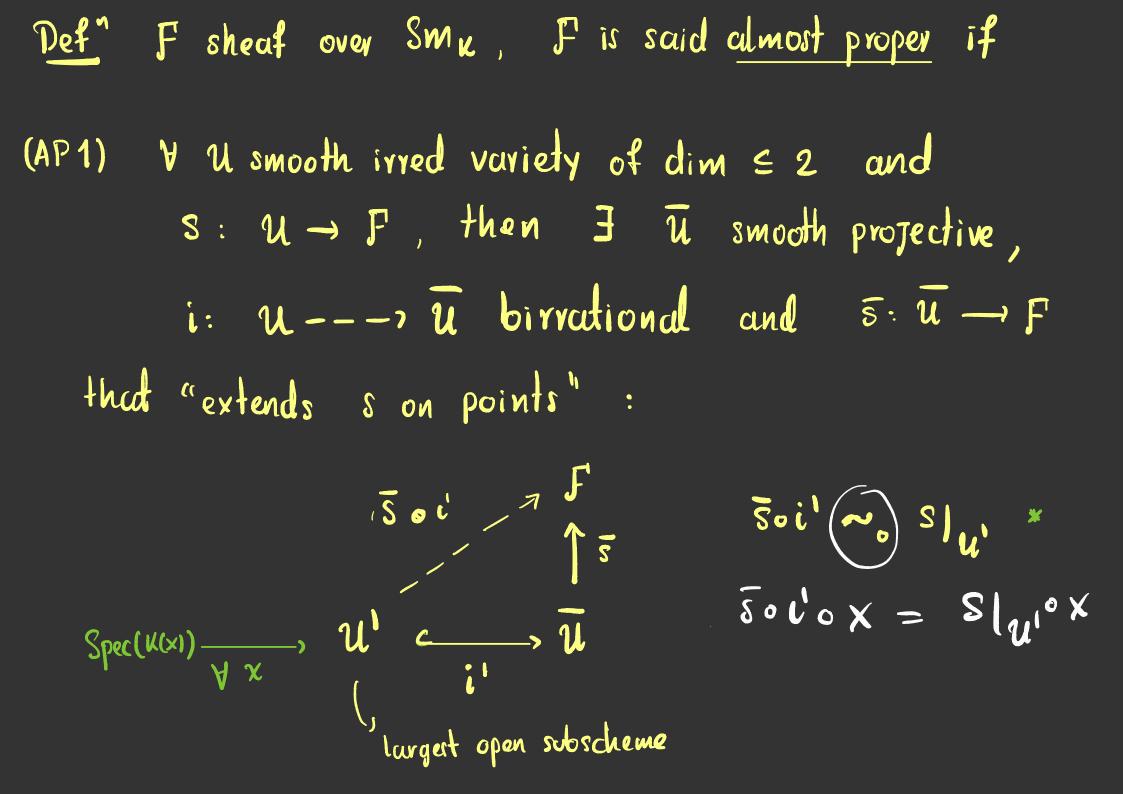
$$\underset{\text{cover}}{\overset{\text{Nisn}}{\underset{\text{cover}}{}}} & \underset{\text{cover}}{\overset{\text{Nisn}}{\underset{\text{cover}}{}}} & \underset{\text{cover}}{\overset{\text{Nisn}}{\underset{\text{cover}}{}}} \end{array}\right)$$

• he F(v) (\cong h: $v \rightarrow F$)

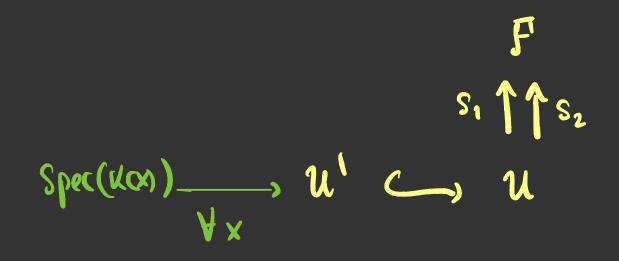
• h^w is an Al¹- chain homotopy connecting:

$$W \longrightarrow V \times_{Al_{u}} V \xrightarrow{pr_{1}} V \xrightarrow{h} F$$

<u>Lemma</u>: Let F sheat over Sm_k, then S(F)= S²(F) ⇐> V U smooth Henselian local, if t₁, t₂ ∈ F(U) are ghost - homotopic then they are Al¹- chean homotopic.



(AP2) U smooth, irreducible curve over K, U' open subscheme of U and $S_1, S_2 : U \rightarrow F$ s.t $S_1|_{U'} = S_2|_{U'}$ then $S_1 \sim S_2$.

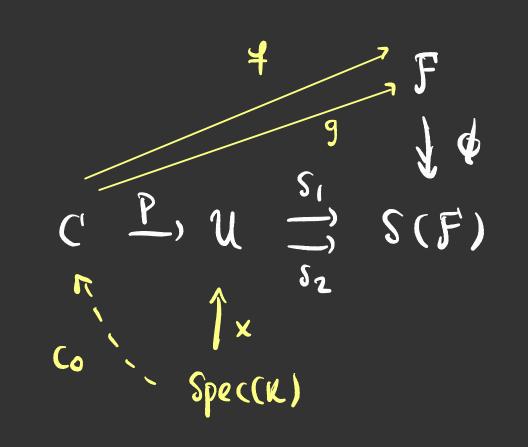


 $\frac{\text{Lemma:}}{\text{Proof:}} F \text{ almost proper } \Longrightarrow \underbrace{S(F)}_{\text{S(F)}} \text{ is also almost proper.}$ $\frac{\text{Proof:}}{\text{Subscheme of } u \text{ and } s_1, s_2 : u \to F$ $s.t \quad s_1)_{u^1} = s_2 \mid_{u^1} \text{ then } s_1 \sim s_2.$

Let U smooth irred curve over K, U' = U open subscheme and $S_1, S_2: \mathcal{U} \longrightarrow S(F)$ s.t $S_1|_{\mathcal{U}} = S_2|_{\mathcal{U}}$. W.I.o.g we may assume U-U' consist of a single closed point x and suppose also x is rational (modulo base change). X: Spec(k) -> U. We need to prove that SIOX = SZOX.

We know $\phi: F \longrightarrow S(F)$ epimorphism. So $\exists C \xrightarrow{P} U$ Nisnevich covering s.t stop, stop lift to F, $\exists f, g: C \longrightarrow F$ s.t

> $\phi_0 f = s_{10}p$ $\phi_0 g = s_{20}p$

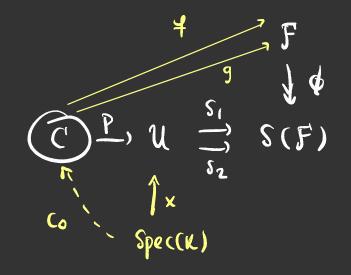


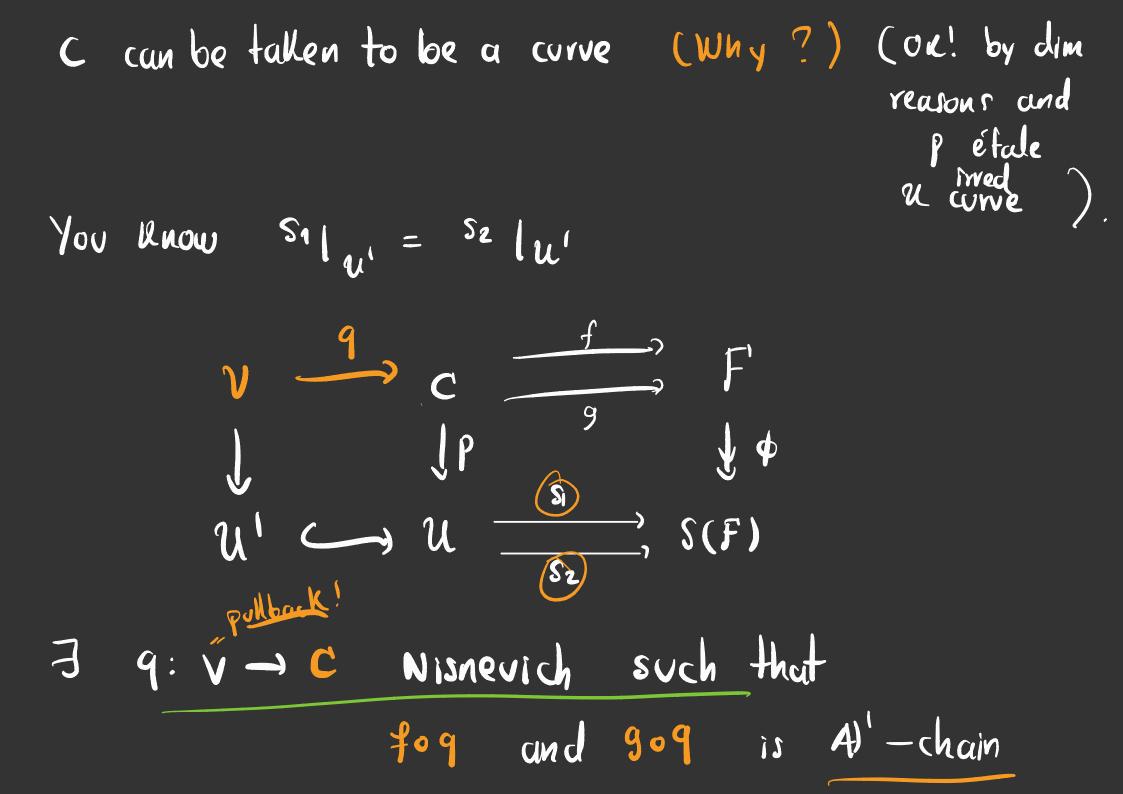
p is completely decomposed at $X = Spec(u) \rightarrow U$ lifts to C. via conspec(u) \rightarrow C. Po Co = X.

If we manage to prove that foco and go co are Al'-chain htpic, we're done!

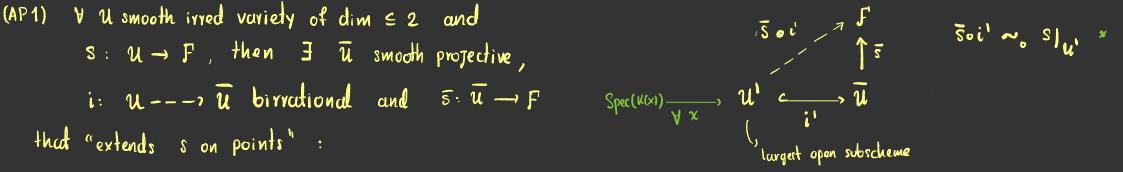
 $S_{1} \circ X = S_{1} \circ \beta \circ C_{0} = \phi \circ f \circ C_{0}$ $= \phi \circ g \circ C_{0}$ $= S_{2} \circ \rho \circ C_{0}$ $= S_{2} \circ X = J($

5





homotopic Consider K function field of C'together with n: Spec(K) -> F. Singe V-C is Nisnevich you can lift of to V so that fon and gon are Al-chain htpic. I c' c a c s.t fla and gla are Al-chain htpic. (Lemma 3.7), by Lemma you conclude that for conclude go co are Al'-chain htpic.



Suppose
$$\mathcal{U}$$
 smooth, irred variety dim $\in \mathbb{Z}$ and $S: \mathcal{U} \rightarrow S(F)$

Since
$$\phi: F \longrightarrow S(F)$$
 is an epi, $\exists p: V \xrightarrow{Nit} U s.t$
 $V \xrightarrow{p} U \xrightarrow{s} S(F)$
 $\underbrace{V \xrightarrow{p} U \xrightarrow{s} S(F)}_{Nis}$
Sop lift to F . $\exists u' \in U s.t$ S/u' also

lift to F, say t: u' -> F'. So 3 û smooth projective, i: u' --> û birational $f: \tilde{u} \longrightarrow F$ (that "extends t on points"). Let u' largest open subscheme of u's.t i rs represented by i': u" -) ū (Recal $\overline{t} \circ \iota' \sim \circ t |_{\mathcal{U}''}$

Cluim:
$$\oint \circ \overline{t}$$
 is the section you're looking for.
We have $i': \mathfrak{U} \longrightarrow \overline{\mathfrak{U}}$ rational, let \mathfrak{U}''' largest
open subschem of \mathfrak{U} s.t $\iota': \mathfrak{U} \longrightarrow \overline{\mathfrak{U}}$ is rep
by $\iota'': \mathfrak{U}'' \longrightarrow \overline{\mathfrak{U}}$ you have $\mathfrak{U}'' \subseteq \mathfrak{U}'''$
Want to show $\forall x \in \mathfrak{U}''': (\overline{s})$
 \overline{t}
 $\oint \circ \overline{t} \circ \overline{\iota}'' \circ x = s | \mathfrak{U}''' \circ x$

$$\frac{\text{If } \times \varepsilon \ u^{"} \subseteq \ u^{"}}{\text{For i' o \times}} = \text{H}_{u^{"}} \circ \times$$

$$\frac{\text{For i' o \times}{\text{For i' o \times}} = \text{H}_{u^{"}} \circ \times$$

$$\frac{\text{For i' o \times}{\text{For i' o \times}} = \frac{\text{For H}_{u^{"}} \circ \times}{\text{For i' o \times}} = \frac{\text{For i' o \times}{\text{For i' o \times}} = \frac{$$

 Ξ generic point of D, $J(\Xi) \in U''$ and use 'last case''.

B

Theorem F almost proper sheaf, then for any field
extension K of K
$$S(F)(Spec K) \cong S^n(F)(Spec K)$$
 $\forall n \ge 1$.
 $Proof:$ Assume $K = K$ (buse change) by last lemma
it suffices to show $S(F)(Spec(u)) = S^2(F)$
 $(Spec(u))$

$$S(F) \longrightarrow S^2(F)$$

IF Idea' table X, Y sit map to sume thing in S² => X = Y

Let $X, Y \in S(F)(Spec(K))$ and suppose h: $AI'_{K} \longrightarrow S(F)$ s.t h(o) = Xh(1) = yf'JØ $\mathcal{U} \longrightarrow \mathcal{A}^{1}_{\mathcal{K}} \xrightarrow{h} \mathcal{S}(\mathcal{F})$ JU open in Alx and h': U -> F

such that $h|_{\mathcal{H}} = \phi \circ h'$. Since F' is almost proper by (AP1) (relative to h') (find proj, bir, a section over proj) F h : $\mathbb{P}_{k}^{1} \longrightarrow F$ extending h' on points means if $u \rightarrow Al_{\kappa}^{1} \rightarrow P_{\kappa}^{1}$ then Yxe U hoiox = h'ox

use this to the generic point of U to get U'open subscheme of U s.t

$$\overline{h}_{u'} = \overline{h} \circ i_{u'} = h'_{u'}$$

take
$$\tilde{h}_{:} = \phi \circ \tilde{h} |_{A_{K}^{1}}$$
: $Al^{1} \longrightarrow S(F)$

and
$$\tilde{h}|_{u'} = (\phi \circ \tilde{h}|_{A'k})|_{u'} = \phi \circ \tilde{h}|_{u'}$$

= $\phi \circ h'|_{u'}$
= $h|_{u'}$

By (AP2) =) $\tilde{h} \sim 0$ h

B

$$h(o) = x = (\phi \circ h)(0:1)$$

$$h(1) = \gamma = (\phi \circ h)(1:1)$$

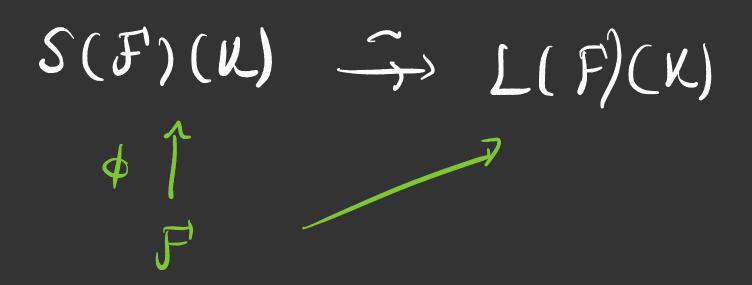
$$x \text{ and } \gamma \text{ are images under } \phi \text{ of } Al' - h \text{ fpic}$$

$$morphism \qquad \text{Spec}(u) \longrightarrow F \text{ by } def \text{ of } 5$$

$$\times = \gamma$$

Corollary: F almost proper sheaf then S(F)(Speck) ~> Ло^{AI1}(Speck) for any KIk finitely generated. In particular this holds for X proper, finite type over k.

Recall



L(F) F 2 、 す。^{A1}(子)

$$\frac{\text{Conjecture 1}: (\text{Horel}) \times \text{simplicial sheaf}, \text{ then}}{\mathcal{T}_{o}^{A^{1}}(\mathbf{x}) \text{ is } A^{1} - \text{invariant}}.$$

$$\frac{\text{Conjecture 2}: \times \text{ smooth scheme over } \kappa, \text{ the natural}}{\text{epimorphism}} \xrightarrow{\mathcal{S}(\mathbf{x}) \longrightarrow \mathcal{T}_{o}^{A^{1}}(\mathbf{x})} \text{ is an iso.}$$

Goal: Conjectures 1 and 2 hold for non-uniruled surfaces over K. ?

Lemma: Let F sheat over Sm_{k} , then $S(F) = S^{2}(F)$ \iff \forall \mathcal{U} smooth Henselian local, if $t_{1}, t_{2} \in F(\mathcal{U})$ are ghost - homotopic then they are A^{1} - cheeln homotopic.

+ reduction to 1-dimensional schemes.

<u>Def</u>: X scheme over K, $f: Y \longrightarrow X$ is a \mathbb{P}^{1} -fibration if f is smooth, proper and $\forall x \in X$, $f^{-1}(x)$ is a radional curve.

Lemma: E, B varieties over K IT: E -> B smooth, projective over K YbeB, IT⁻¹(b) = Eb isomorphic to IP¹_b Then IT is an étale locally trivial fiber bundle.

