$$(w_{x}w)_{P_{1},w}^{(W_{x}Y)} \simeq p_{r_{1}}^{+}(W_{x}Z) \xrightarrow{a} p_{r_{2}}^{+}(W_{x}Z) \simeq (w_{x}Y)_{x}(W_{x}w)$$

$$g \in Aut(Y)(W_{x}W) = Aut(Y(W_{x}W), Y_{x}(W_{x}W))$$

$$G(w) \xrightarrow{p_{1}}^{P_{1}} G(w_{x}W) \xrightarrow{h_{r_{2}}^{+}} G(w_{x}w)$$

$$F_{g}^{+} \xrightarrow{f_{r_{2}}^{+}} G(w_{x}w) \xrightarrow{h_{r_{2}}^{+}} G(w_{x}w_{x}w)$$

$$F_{r_{3}}^{+} \xrightarrow{f_{1}}^{+} G(w_{x}w) \xrightarrow{h_{r_{2}}^{+}} G(w_{x}w_{x}w)$$

$$F_{g}^{+} \xrightarrow{f_{1}}^{+} \xrightarrow{f_{1}}^{+} \xrightarrow{f_{1}}^{+} G(w_{x}w) \xrightarrow{h_{r_{2}}^{+}} G(w_{x}w_{x}w)$$

$$F_{g}^{+} \xrightarrow{f_{1}}^{+} \xrightarrow{f_{1$$

Let
$$X \in A^{P}Shv(Supp)$$
. A G-torsor on H is $Y \to X$
s.t. a: $G \times J \to Y$ (left action) is rategonically
 $Free.$
 $G \times J \xrightarrow{P^{*}} Y \to J/_{G} \xrightarrow{P^{*}} X$
 G -equiview
Geometrically: if G is k-gtoup scheme, $X = k$ -scheme.
(for $Z = Zon, Nis, et)$
A G-torson $X = 2 - locally trivial on X is a tuple
($P \stackrel{f}{\to} X, G$) where P is a X-scheme with
scheme theoretically free G-action a: $G \times P \to P$
(i.e. $G \times P \to P \times P$ is a monomorphism of schemes)
 $G \times W \xrightarrow{P} W \xrightarrow{P} Y$
 $G \times W \xrightarrow{P} Y \xrightarrow{P} Y$
 $G \times W \xrightarrow{P} Y \xrightarrow{P} Y$
 $G \times W \xrightarrow{P} Y \xrightarrow{P} Y$
 $F = 10 - 2000 \text{ on } X$.
 $F = 10 - 2000 \text{ on } X$.
 $F = 10 - 2000 \text{ on } X$.
 $F = 10 - 2000 \text{ on } X$.
Remarks:
 $Smooth$
 $Tf = Aut(Y)$ is X -group scheme, the defs coincide.
 $So we can use either def.$
 $Tf = Y$ is proper & chore $k = 0$, $Aut(Y)$ is k-group scheme.
(need not be kfinite type)
 $Tf = k = alg cloud, Y projective/k, Aut(Y)$ is a smooth k-group scheme.
 $(need not be kfinite type)$$

Back to h-cobordism: sheaf of groups Aut(y) s.t.

$$H'_{Nis}(X, Aut(y)) \rightarrow H'_{Nis}(X \times A', Aut(y))$$
 is not surjective, produces
a non-trivial h-cobordism.
This prompts the following question:
Pheotion: Under which conditions on G, Px is a bjection?
 $P_{x}^{*}: H'_{Nis}(X, G) \xrightarrow{\sim} H'_{Nis}(X \times A', G)$

Det: Let G be a Nisnevich sheaf of groups.
We say G is strongly A'-invariant if ¥ U ∈ Sm/k,
p⁴: Hⁱ(U,G) → Hⁱ(U×A', G) for i=0,1.
We say G is strongly A'-invariant in etale topology
if ¥ U ∈ Sm/k,
p⁴: Hⁱ(M,G) → Hⁱ(U×A',G) for i=0,1.
Examples:
$$\pi_i^{A'}(X,x)$$
 for a space X are typical examples of
strongly A'-invariant sheaves.
Let G be a Disnevich sheaf of group.
Let EG = Čech object associated to G → Speck.
Explicitly (EG)_n = G ×....× G (n+1)-times

$$(EG)_{ner} = G \times \cdots \times G \times G$$

$$(g_{n-1} = G \times \cdots \times G \times G$$

$$(g_{n-1} = G \times \cdots \times G \times G$$

$$(g_{n-1} = g_{n-1} \times G \times G$$

$$(EG)_{n-1} = G \times \cdots \times G \times G$$

$$(EG)_{n-1} = G \times G \times G$$

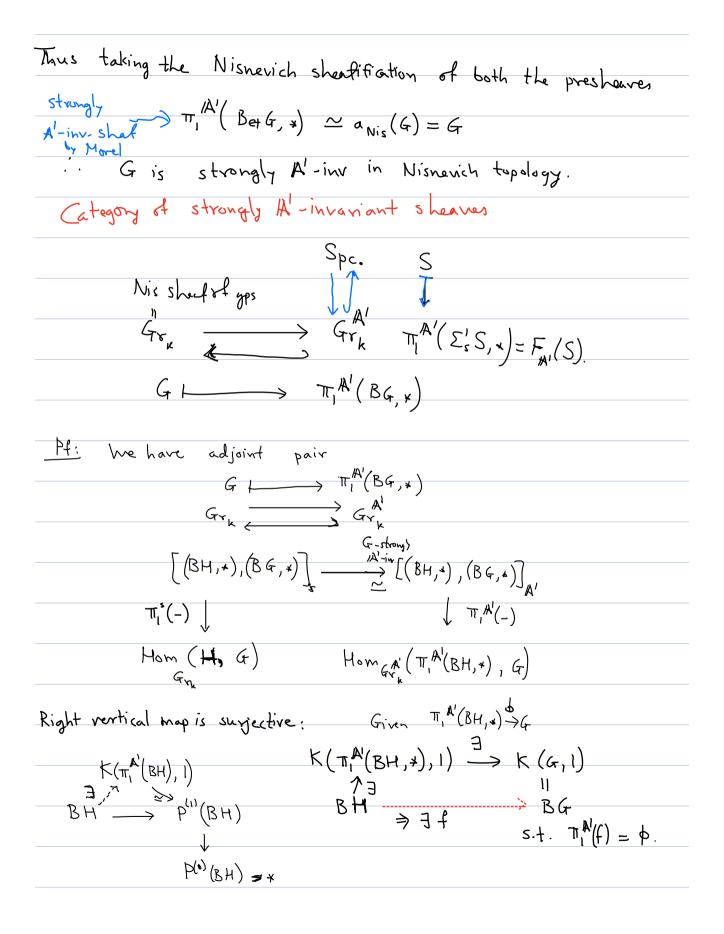
$$(EG$$

Other identities can be checked which imply that
h is simplicially homotopy from id to sof.
Note
$$EG \rightarrow BG$$
 is G-torsor (universal).
BG classifies G-torsors locally trivial in Nisnevich top ky.
To $(BG(U), x) \rightarrow H'(U, G) = set A$ iso. classes
of G-torsors on U.
Let $BG \rightarrow BG$ be fibrant replacement
 $[U, BG]_{H_{s}(k)} \rightarrow H'(U, G)$.
Similarly $[U, BG]_{H_{s}^{et}(k)} \rightarrow H'_{et}(U, G)$.
Let G be Nisnevich sheaf of groups:
Then $(BG - is A' - local)$ iff G is strongly $A' - invariant$.
 $(simp.tib. replacement of BG)$
Similarly ifG is etale sheaf of groups:
Then $(BG - is A' - local)$ iff G is strongly $A' - invariant$
 $(simp.tib. replacement of BG)$

Notation: let
$$G = etale sheaf of groups.$$

 $u : (Sm_k)_{et} \longrightarrow (Sm_k)_{Nis}$
(adjoint priv) u^{*} : Spc_k \longrightarrow Spc^{et} u_{x}
 $g_{et} G := d_{+} (BG^{f})$
where BG^{f} is etale simplicial fibromt replacement of BG .
Lamma: let G be an etale sheaf of groups. Then
 G is strongly A^{I} -invariant in et topology iff $B_{et}G$ is A^{I} -local.
Thus if G is strongly A^{I} -invariant in et topology then $F \cup CSm_{k}$
 $\left[\sum_{s}^{i} A \cup_{+} (B_{et}G, s)\right]_{H_{A_{i}}^{Nis}(k)} \xrightarrow{\sim} H_{e+}^{I-1} (\bigcup, G)$ i=0, 1.
How u^{i} etale topology.
If BG is A^{I} -local in etale topology, then BG^{-1} is A^{I} -local
is etale topology.
Tf BG is A^{I} -local in etale topology, then BG^{-1} is A^{I} -local
is etale topology.
Tf BG is A^{I} -local in Spc_{k}^{et}
 $\left[Y, u_{+}X\right]_{s} \xrightarrow{\sim} [Y \times A^{I}, u_{3}X]_{s}$
 $\left[U = (u^{+}Y, X)_{s, et} \xrightarrow{\sim} [U^{+}Y \times A^{I}, u_{3}X]_{s, et}$
 X_{in}^{N} A^{I} -local in $\left[(u^{+}Y) \times A^{I}, X\right]_{s, et}$
 $\left[u \in u^{+}Y, X = u^{I}$
 X_{in}^{N} A^{I} is u^{I} -local in u^{I}

Thus
$$B_{et}G := \alpha_*(BG^{f})$$
 is $A^{i} + \log_{i} \cdot S_{pc_{k}}$.
Conversely, $L + B_{et}G = A^{i} - \log_{i}$.
 $E \in S_{pc_{k}}$
 $\left[(\chi, \chi), (B_{et}G, \star)\right] \xrightarrow{\sim} \left[(\chi, \chi), (B_{et}G, \star)\right]_{A^{i}}$
 $\left[\chi(\chi, \chi), (BG^{f}, \chi)\right]_{s,et}$
 $\sum \left[\alpha^{*}(\chi, \chi), (BG^{f}, \chi)\right]_{s,et}$
 $\sum \left[\alpha^{*}(\chi, \chi) - \sum_{s} \cdot A \cup_{t} \rightarrow e_{get}\right]_{s,et}$
 $\sum \left[\Sigma_{s}^{i} \wedge \cup_{t}, (BG, \star)\right] \xrightarrow{H_{A^{i},c}^{et}} \left[\Sigma_{s}^{i} \wedge \cup_{t}, (B_{s}^{e}, \star)\right]_{A^{i}}$
 $\left[\chi_{e_{t}}^{i}(U, G)\right]$



Right vertical map is injective: let
$$(BH, *) \xrightarrow{f} (BG, *)$$
 s.t.
 $I_{*} = g_{*} : \pi_{i}^{A}(BH, *) \rightarrow G$
 $f_{*} : BH \longrightarrow K(\pi_{i}^{A}(BH), 1) \longrightarrow K(BG+1) \xrightarrow{\sim} BG$
 g_{*}
lett vertical map is surj: Given $H \xrightarrow{f} G$, let $BH \xrightarrow{B(A)} BG$
 g_{*}
lett vertical map is surj: Given $H \xrightarrow{f} G$, let $BH \xrightarrow{B(A)} BG$
 g_{*}
 $I_{*} = g_{*} : \pi_{i}^{A}(BG)$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BH), 1) \longrightarrow \pi_{i}^{A}(BG)$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BH), 1) \xrightarrow{\pi} K(\pi_{i}^{B}(BG), 1) \xrightarrow{\simeq} BG$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BH), 1) \xrightarrow{\pi} K(\pi_{i}^{B}(BG), 1) \xrightarrow{\simeq} BG$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BH), 1) \xrightarrow{\pi} K(\pi_{i}^{B}(BG), 1) \xrightarrow{\simeq} BG$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BG), 1) \xrightarrow{\pi} K(\pi_{i}^{A}(BG), 1) \xrightarrow{\simeq} BG$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BG), 1) \xrightarrow{\pi} K(\pi_{i}^{A}(BG), 1) \xrightarrow{\simeq} BG$
 $H \xrightarrow{g_{*}} K(\pi_{i}^{A}(BG), 1) \xrightarrow{\pi} K(\pi_{i}^{A}(BG), 1) \xrightarrow{\simeq} BG$
 $H \xrightarrow{g_{*}} G_{*}^{A'}$
 $K \xrightarrow{g_{*}} G_{*}^{A'}$
 $H \xrightarrow{g_{*}} G_{*}^{A'}$
 $H \xrightarrow{g_{*}} G_{*}^{A'}$
 $H \xrightarrow{g_{*}} G_{*}^{A'}$
 $K \xrightarrow{g_{*}} G_{*}^{A'}$
 $G_{*} \xrightarrow{g_{*}} G_{*}^{A'}$
 $K \xrightarrow{g_{*}}$

Def: The free strongly
$$A' - inv$$
 sheaf of groups on
a pointed sheaf of sets (S, s) is
 $F_{A'}(S) = T_{i}^{A'}(\Sigma'_{s}S)$.
For any strongly $A' - invariant$ sheaf of groups G
Hom $A'(F_{A'}(S), G) \xrightarrow{\sim}$ Hom $((S, c), G)$.
 $F_{C'k}$
 $Pf: BG is A' - local \Rightarrow$
 $E\Sigma'_{s}S, BG]_{s} \xrightarrow{\sim} [\Sigma'_{s}S, BG]_{A'}$
 $T_{A'}(-) [l]$
Hom $A'(T_{i}^{A}(\Sigma'_{s}S), G) \xrightarrow{\sim} [(S_{i}t)_{j}-C'_{s}BG]_{s}$
 $K(T_{i}^{A}(\Sigma'_{s}S), G) \xrightarrow{\sim} [C_{i}t_{s})_{i}C_{s}, G)$
 $K(T_{i}^{A}(\Sigma'_{s}S), G) \xrightarrow{\sim} [C_{i}t_{s})_{i}C_{s}, G)$
 $F_{C'k}$

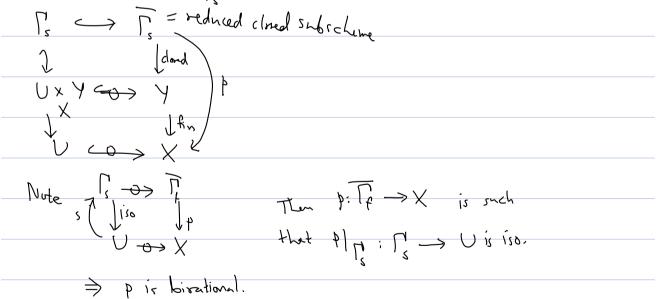
Proposition: Let
$$X \in Sm_{k}$$
 be connected, and G be an etale sheaf
of groups strongly $A^{1-invariant}$ in etale topology.
For two points $x_{1}, x_{2} \in X(k)$, the maps coincide i.e.
 $x_{1}^{n} \equiv x_{2}^{n} : H_{et}^{i}(X, G) \longrightarrow H_{et}^{i}(Speck,G)$.
Let us denote this prop by p for any vational point.
The natural map
 $H_{et}^{i}(X, G) \longrightarrow H_{et}^{i}(Speck, G)$
 $H_{Nis}^{i}(X, G) \longrightarrow p^{i}(x)$
Proof: 1st port: $H_{et}^{i}(X, G) \longrightarrow H_{et}^{i}(Speck, G)$
 $I = \frac{10}{Nis} H_{et}^{i}(X, G) \longrightarrow H_{et}^{i}(Speck, G)$
 $H_{Nis}^{i}(X, G) \longrightarrow p^{i}(x)$
Proof: 1st port: $H_{et}^{i}(X, G) \longrightarrow H_{et}^{i}(Speck, G)$
 $I = \frac{10}{Nis} H_{et}^{i}(X, G) \longrightarrow H_{et}^{i}(Speck, G)$
 $H_{Nis}^{i}(X, G) \longrightarrow p^{i}(x)$
Chose a representative $c: X \longrightarrow B_{et}G$. The composite map
 $Speck \xrightarrow{X_{i}} X \xrightarrow{Z} B_{et}G$ factor through $X \longrightarrow Th_{et}^{i}(X)$
 $I = \frac{1}{Nis} (B_{et}G)$ induces the same section $x \longrightarrow T_{a}^{A'}(B_{a}G)$
 $T_{a}^{N}(z)$
Let $i ndependent$ of $x \in X(k)$.

2nd part: Thinking of G as Nisnevich sheet, BG is 12'-o-connected. $(\mathsf{B} \mathsf{G}_{r},*) \longrightarrow (\mathsf{B}_{\mathsf{et}} \mathsf{G}_{r},*)$ The map induces inclusion $* = \pi_{a}^{A'}(BG) \longrightarrow \pi_{a}^{A'}(B_{et}G)$ & iso $\pi_i^{\mathbf{A}'}(\mathbf{B}_G) \longrightarrow \pi_i^{\mathbf{A}'}(\mathbf{B}_{e_1} G).$ (BG, *) -> (BetG, *) is the inclusion of the A-connected Thus component of the base point. he have. 1) BG is Al-local $H'_{Nis}(X,G) \longrightarrow H'_{e+}(X,G)$ To M'(Bet G) (Speck) Claim: $[X, BG]_{A} \longrightarrow p'(x)$ is bijective. Clearly 1-1 Onto: Choose a representative c: X -> BebG s.t. $\begin{array}{c} X \xrightarrow{z} B_{et}G \\ \downarrow \\ \pi_{o}^{A'}(X) \xrightarrow{\mu} \pi_{o}^{A'}(B_{et}G) \end{array}$ inclusion of connected comparent of x. X is Al-connected, so has a Postnikov tower

 $\begin{array}{c} \mathsf{K}(\pi,\mathsf{A}^{\mathsf{M}}(\mathsf{X},\star),\mathfrak{I}) \xrightarrow{\exists} \mathsf{K}(\pi,\mathsf{A}^{\mathsf{I}}(\mathsf{B}_{\mathsf{et}}\mathsf{G},\star)) \simeq \mathsf{K}(\mathsf{G},\mathfrak{I}) = \mathsf{B}\mathsf{G}\\ \exists \ \forall & \mathsf{P}^{(\mathfrak{I})} \times \longrightarrow \mathsf{P}^{(\mathfrak{I})} \left(\mathsf{B}_{\mathsf{et}}\mathsf{G}^{(\mathfrak{d})} \right) \xrightarrow{\forall} \mathsf{K}(\mathsf{G},\mathfrak{I}) = \mathsf{B}\mathsf{G}\\ & \mathsf{funct}_{\mathsf{R}} \xrightarrow{\mathsf{G}} \mathsf{P}^{(\mathfrak{I})} \times \longrightarrow \mathsf{P}^{(\mathfrak{I})} \left(\mathsf{B}_{\mathsf{et}}\mathsf{G}^{(\mathfrak{d})} \right) \xrightarrow{\forall} \mathsf{funct}_{\mathsf{R}} \xrightarrow{\mathsf{G}} \mathsf{P}^{(\mathfrak{I})} \xrightarrow{\mathsf{G}} \mathsf{F}_{\mathsf{R}} \mathsf{P}^{(\mathfrak{I})} \xrightarrow{\mathsf{G}} \mathsf{F}_{\mathsf{R}} \mathsf{F}_{\mathsf{R}} \xrightarrow{\mathsf{G}} \xrightarrow{\mathsf{G}} \mathsf{F}_{\mathsf{R}} \xrightarrow{\mathsf{G}} \xrightarrow{\mathsf{G}} \mathsf{F}_{\mathsf{R}} \xrightarrow{\mathsf{G}} \xrightarrow{\mathsf$ functioniality of Postinikov \mathbf{V}

Proposition: Let k be a separably cloud field of exp. churp. IF X is A'-connected, then X admits no non-trivial finite etale Falois covers of degree coprime to p. Hence $\pi_i^{et}(X, x)$ is pro-p-group. Pf: let Y -> X be a finite etale Galois cover associated to a group G of order aprime to p. Since G is an etale group scheme of order coprime to p. by [MV, §4, Prop 3.1, page 137], Bet G is A-local. Thus & is strongly A'-invariant in etale topology. -1-lence by above proposition $H_{Nis}^{\prime}(X,G) \longrightarrow H_{et}^{\prime}(X,G) \rightarrow H_{et}^{\prime}(Speck,G)$ Y => X is Nisnevich tocally trivial G-torsor

Claim. Y + X admits a section i.e.] s: X -> Y s.t. fossil. WLOG we can assume that X is irre unible smooth variety /k. By assumption that Y >> X is Nis locally trivial Consider T's UXY the graph of s & Ts the closur of Ts in Y. Ts ~ Ts = reduced closed subschime



Further pis finite, Lence proper.

Thus p:
$$\overline{\Gamma_{s}} \longrightarrow X$$
 is a bivational, proper map of integral schemes
 \Rightarrow each fiber of p is connected.
but p is finite, hence quasi-finite.
 \Rightarrow each fiber is singleton.
Also p is prosper, hence closed, be $p((\overline{\Gamma_{s}}) \supset U)$ due
 $\therefore p(\overline{\Gamma_{s}}) = X$ is $proper binton$
i.e. p is surjective.
Thus $p: \overline{\Gamma_{s}} \longrightarrow X$ is proper binton
bijective map $\Rightarrow p$ is iso.
 $A: Milleu's$ $p'(\frac{\gamma_{i}}{\gamma_{j}}) p$
 $Zoonishi's main $Gor_{3.9}$ $X \in$
thus $p': X \rightarrow \overline{\Gamma_{s}} \rightarrow Y$ st. fogsidx
 $\frac{\gamma_{i}}{\gamma_{i}}$
Hence $\pi_{i}^{e+}(X, x)$ is pro-p-group.$

Def: let A be a Nisnerich sheef of abelian groups.
A is strictly A'-invariant if
$$\forall U \in Sm_k$$

 $H_{Nis}^i(U, A) \xrightarrow{\mu} H_i^i(U \times A', A) \quad \forall i \geq 0.$
Given etale sheaf A, A is strictly A'-inv in etale topology if
 $H_{et}^i(U, A) \xrightarrow{\sim} H_{et}^i(U \times A', A) \quad \forall i \geq 0.$
A is strictly A'-inv $\Leftrightarrow \quad K(A, i) \quad \text{is } A'-local \quad \forall i \geq 0.$
A is strictly A'-inv in et $\Leftrightarrow \quad K(A, i) \quad \text{is } A'-local \quad \forall i \geq 0.$
A is strictly A'-inv in et $\Leftrightarrow \quad K(A, i) \quad \text{is } A'-local \quad \forall i \geq 0.$

Det: let A be etale sheaf
$$K(A,i) \in Spc_{k}^{et}$$
.
let $K(A,i)^{f} = fibrant$ replacement of $K(A,i)$ in Spc_{k}^{et} .
Define $K_{et}(A,i) = d_{\chi} K(A,i)^{f} \in Spc_{k}$.

$$\begin{bmatrix} \Sigma_{s}^{i} \wedge U_{t}, K_{et}(A, i) \end{bmatrix} \xrightarrow{\sim} H_{et}^{i-j}(U, A)$$

$$\xrightarrow{\forall e j \leq i}$$

.Pf: Similar as before: $\begin{bmatrix} \Sigma_{s}^{j} \wedge U_{t}, & K_{e+}(A,i) \end{bmatrix} \simeq \begin{bmatrix} \alpha^{*} (\Sigma_{s}^{j} \wedge U_{t}), & K(A,i)^{t} \end{bmatrix}_{H^{e}} \\ A^{i} a djuction \qquad |) \qquad A^{i}$ $\left[\sum_{i} \mathcal{N} \mathcal{U}_{+,i} \times (A,i)^{f} \right]_{j}$ \sim 12 K(A, i) is Al-local $\left[\Sigma_{s}^{j}\Lambda U_{4}, K(A,i)\right]_{H_{s}^{e_{4}}(k)}$ الا (A , U) <u>ز</u>ندا

book: Thm 5.46 Thm (Morel): Let A be strongly A - invariant sheat of abelian groups. Then A is strictly A'-invariant. $\underline{Pf:} (Sketch) \qquad H^*(U, A) \simeq H^*(C_{RS}(U; A))$ } + UESm $C'_{RS}(U;A) \longrightarrow C'_{RS}(U \times A';A)$ guasi-isomorphism Cor: let A be an etale sheaf of abelian groups strongly

Summarizing:
gives axing ks
full subject
2 [1/] models
klim Abstride Abstride Abstringer
2 [1/] models a that "Abbar K= p. let A be etale
start Z [1/2] - modules that is A'-invariant. Then
A is strictly A'-invariant. For etale topology.
Pf: Given a s.e.s. of etale sheaves of Z [1/2] - modules
or A' -> A -> A'' -> 0
if 2 of them are strictly A'-inv in et top then so is 3^{vd}.
Consider or A tors -> A -> A&& -> A
Note A tors an torson coprime to p.
Reduce to show lamma for A either
1) A is a sheaf of Q-vector spaces or y etale
1) A is torsion coprime to p.
Reduce to show lamma for A either
2) A is torsion coprime to p.
Ref: Prop 14.23 technics.
The case 1)
$$\forall i: Hier (U, A) = His is 3vid. Yes this in d-inv. Tor.
2) [MVW, Thm 7.20]: Shelin's night ty Hm : Tor. 13.8$$

A is locally constant :
$$T^{k} T_{k}A \xrightarrow{N} A$$
 is iso where
 $T^{k} : Shvet(Et/k) \xrightarrow{P} Sher(Sm k): TT_{k}$
Then by $[S+A4, Toma 3, XV, Cor 2.2]$
 $H_{0+}^{i}(-, A)$ is A' -invariant.
Prop: Let k be a field of exp char p. let $X \in Sm/k$.
Let $l \neq p$, $G_{m}^{i} = G_{m} \bigotimes^{i} \mathbb{Z}[\frac{1}{p}]$. Then $Br(X)[l] \hookrightarrow H_{et}^{2}(X, G_{m}^{i})$.
Proof: Let $G_{m}^{i} = etale sheet associated to the presheel
 $U \mapsto O(U)^{X} \otimes \mathbb{Z}[\frac{1}{p}]$
char $k=0$: $G_{m}^{i} = G_{m}$
 $We know Br(X) \hookrightarrow H_{et}^{2}(X, G_{m})$
 $Proof$: Let $G_{m}^{i} = G_{m}$
 $We know Br(X) \hookrightarrow H_{et}^{2}(X, G_{m})$
 $h_{et}^{i}(X, G_{m})$
 $for if are laprime to $p: \phi$ is injective on $Br(X)[x]$.
For if $are Br(X)[x] \longrightarrow H_{et}^{2}(X, G_{m})$
 $For if are laprime to $p: \phi$ is injective on $Br(X)[x]$.
 $For if are Br(X)[x]$ s.t. $o = \phi(a)$.
 $hre have $l^{n} \cdot x = 0$ in $Br(X)$ for some $n \geq 1$.
 G_{m}^{i} is $\mathbb{Z}[\frac{1}{p}]$ -modules $\Rightarrow H_{et}^{2}(X, G_{m}^{i})$ is also $\mathbb{Z}[\frac{1}{p}]$ -modules.
 $So \phi(\alpha) = o \Rightarrow \exists m st. p^{m}\Psi(\alpha) = o \text{ in } H_{et}^{i}(X, G_{m})$.$$$$

But
$$(h a = 0, since a in Br(X)[L].$$

 $a = 0$ in $Br(X)$
i.e. $\phi: Br(X)[L] \longrightarrow H^2_{e+}(X, C_m)$ is injective for $L \neq p$.
Prop. 5.3.8: k field expectave $k = p$. $x \in X(k)$. $X \land A^{-}$ connected.
Then $X \xrightarrow{T}$ Speck induces isomorphism
 $H^2_{e+}(X, C_q) \xrightarrow{T} H^2_{e+}(k, C_q)$.
The particular if k is exparably closed, $Br(X)$ is p -grap.
 $pf:$
 $H^2_{e+}(K, C_q) \longrightarrow H^2(X, C_q) \longrightarrow H^2_{e+}(k, C_{q'})$
 $[\sum^{n} A speck_{e+} K_{e+}(C_q)^2] \longrightarrow [X_{+}, K_{e+}(C_{q'})^2] \longrightarrow [Speck_{+}, K_{e+}(C_{q'})^2]$
To show I at map is onto:
 $Let X \xrightarrow{T} K_{e+}(C_{q'}) \longrightarrow T_0^{A'}(K_{e+}(C_{q'})^2)$
 $x = T_0^{A'}(X) \longrightarrow T_0^{A'}(X)$
 $f = T_0^{A'}(X) \longrightarrow T_0^{A'}(X)$
Thus $H^2_{e+}(X, C_q') \longrightarrow H^2_{e+}(k, C_{q'})$ is bijective.

Br (X)
$$\longrightarrow$$
 $H^{2}(X, G_{m})$
 $for l \neq p: br(X) [L] \longrightarrow$ $H^{2}_{er}(X, G'_{m}) \simeq H^{2}_{er}(k, G'_{m})$
 \vdots $br(X)[L] = 0$ for $l \neq p$.
 \vdots $br(X)[L] = 0$ for $l \neq p$.
 $br(X) is p = trainent.$
 $br(X) = trainent.$
 $br(X) = p = trainent.$
 $br(X) = trainent.$
 b

Example: Let G = simply connected, semi-simple alg. group
over a field k, expector
$$k = p$$
.
 $G^{+}(k) = \langle f(Gr_{a}(k)) | f: Gr_{a} \longrightarrow G$ homomorphism \rangle
 $gen.$
 $G(k) \longrightarrow G(k) = W(k,G) = "Whitehead group".$
 $G^{+}(k)$
Kneser-Tits problem: For which groups G, $W(k,G) = 1$.
We say a group G is W-trivial if $W(L,G) = 1 + L/k$.
Question (Gille) Can be characterize G s.t. G is W-trivial?
Note: G is W-trivial $\Rightarrow A'$ - chain connected $\Rightarrow A'$ -connected.
(Gille: in addition to above assumptions if G is split, then
G is W-trivial \Rightarrow hence A' -connected.
By what we saw today, G-W-trivial \Rightarrow Br(G) is p-torsion.

END