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The letter k denotes a field. By scheme, we mean a separated k-scheme that is essentially of
finite type as a k-scheme: by definition, this means that any scheme in our sense is a filtered limit
of a diagram of finite type smooth k-schemes with smooth affine transition maps: the fibre product
of schemes X and Y over Spec k is more simply denoted by X × Y; similarly, if there is no further
specification, An and Pn denote affine and projective n-space over k respectively. A smooth k-scheme
is a scheme in this sense that is smooth over k and of finite type: the category of smooth k-schemes
with all k-morphisms of schemes as morphisms is denoted by Smk. By k-variety, we mean an integral1
scheme of finite type over k; the function field of a k-variety X is the stalk k(X) of OX at the generic
point of X2.

1. Birational geometry

First recall the following lemma about extending local morphisms.

Lemma 1.1. Let Y and X be schemes, let x be a point of X and let y be a point of Y.

• Assume that X is of finite type at x. If f and f ′ are k-scheme morphisms from Y to X such that
f(y) = f ′(y) = x and if the k-morphisms OX,x → OY,y induced by f and f ′ are equal, then there
exists an open neighbourhood U of y such that f = f ′ on U.

• Assume that X is of finite presentation at x. Let φ : OX,x → OY,y be a local k-morphism. Then
there exists opens x ∈ U ⊆ X and y ∈ V ⊆ Y and a scheme morphism f : V → U such that
φ = f∗ : OX,x → OY,y.

• Assume that Y is of finite presentation at y and that X is of finite presentation at x. Let
φ : OX,x → OY,y be a k-isomorphism. Then there exist opens x ∈ U ⊆ X and y ∈ V ⊆ Y and an
isomorphism f : V→ U such that φ = f∗ : OX,x → OY,y.

Remark. Of course, since k is a field, finite type and finite presentation conditions coincide. The proof
however will make it clear that X and Y could be schemes over any base (it is however then required
to assume that x and y map to the same point of the base, since the statements do not make sense
otherwise).

Proof. The question obviously being local in each case, we may assume that X = Spec A and Y =
Spec B are the spectra of k-algebras. Let p (respectively q) be the prime ideal of A (respectively B)
corresponding to x (respectively y).

1Hence non-empty.
2This stalk is a field: looking in any affine open neighbourhood U = Spec A of the generic point η, η corresponds to

the zero ideal of A and k(X) is simply the fraction field of A.
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2 1. Birational geometry

• Up to replacing X by an affine open neighbourhood of x whose ring of global sections is a finite-
type k-algebra, we may assume that A is a finite-type k-algebra, say A = k[t1, . . . , tn]/I for some
ideal I. Let ti

1 denote the image of ti in Ap. Then by assumption, f∗( ti
1 ) = f∗ti

1 is equal to
f ′( ti

1 ) = f ′∗ti
1 in Bq for all i, hence sif

∗ti = sif
′∗ti for some si ∈ B \ q. Set s = s1 · · · sn; then

f∗ti
1 = f ′∗ti

1 in Bs for all i, thus the maps A → Bs are equal. Therefore U = D(s) satisfies the
condition of the claim.

• Again, we may assume that A is of finite presentation over k. Write A = k[t1, . . . , tn]/⟨f1, . . . , fr⟩.
As above, we see that there exists s ∈ B \ q and, for each i, bi ∈ B such that φ( ti

1 ) = bi
s . We

thus obtain a map ψ : k[t1, . . . , tn]→ Bs by sending ti to bi
s which sends fi to 0, hence again as

above there exists s′ ∈ B \ p such that s′ψ(fi) = 0 for all i. Then ψ induces a map A → Bss′

which induces φ by localisation which produces the desired scheme map.

• There are affine open neighbourhoods U and U′ of x and affine neighbourhoods V and V′ of
y as well as scheme morphisms f : V → U and g : U′ → V such that φ = f∗ : OY,y → OX,x

and ψ = g∗ : OX,x → OY,y. Since f ◦ g : U′ → U and the inclusion of U′ into U induce the
same morphism OX,x, namely IdOX,x

, the first item implies that there exists a neighbourhood
U′′ of x contained in U such that f ◦ g ◦ j = j where j : U′′ → U is the inclusion. Set
V′′ = f−1(U′′). Then the map g ◦ j : U′′ → V factors through the open embedding V′′ ↪→ V:
indeed, f ◦ g ◦ j(x) = j(x) ∈ U′′ for all x ∈ U′′ so that g ◦ j(x) ∈ V′′. Hence we now have
morphisms f : V′′ → U′′ and g : U′′ → V′′.
We replace notations with X = U′′ and Y = V′′ (we may, since U′′ is an open neigbourhood
of x and V′′ is an open neighbourhood of y): we have constructed morphisms f : Y → X and
g : X→ Y such that (f ◦ g)∗ : OX,x → OX,x and (g ◦ f)∗ : OY,y → OY,y are identity morphisms.
If U is open in a scheme Z, we denote by jU the corresponding open embedding. Then by the
first item, f ◦ g ◦ jS = jS for some open S ⊆ X. Setting T = f−1(S), g ◦ jS factors through jT
as above so that we have morphisms f : T → S and g : S → T with f ◦ g = IdS. Now again,
g ◦ f ◦ jT′ = jT′ for some open subset T′ of T. Setting S′ = g−1(T′), we obtain morphisms
g : S′ → T′ and f : T′ → S′ such that f ◦ g = IdS′ and g ◦ f = IdT′ by construction.3 This
provides the desired isomorphism f : T′ → S′ inducing φ.

Corollary 1.2. Let X and Y be k-varieties. Then the following assertions are equivalent.

• The function fields k(X) and k(Y) are isomorphic k-algebras.

• There exist non-empty opens U ⊆ X and V ⊆ Y and an isomorphism V→ U of k-varieties.

Definition 1.3. If X and Y satisfy the equivalent assertions of the above corollary, we say that X
and Y are k-birational or k-birationally equivalent.

The following notion is related though more restrictive.

Definition 1.4. Let f : Y→ X be a morphism of k-varieties. Then f is a birational morphism if the
induced map f∗ : k(X)→ k(Y) is an isomorphism.

Definition 1.5. Let X and Y be k-varieties. Let f : U→ X and g : V→ X be morphisms of k-schemes
with U ⊆ Y and V ⊆ Y open and non-empty. We say that f and g are equivalent if f ◦ jW = g ◦ jW
for some non-empty open W ⊆ U ∩V (here, jW denotes the appropriate open embedding of W).

This defines an equivalence relation on k-scheme morphisms defined on non-empty open subsets of
Y: a rational map φ from Y to X is an equivalence class for this relation and an element of this class
is a representative of φ. Rational maps from Y to X are denoted using dashed arrows φ : Y 99K X.

3The author acknowledges that the writing of this proof is poor but he did not manage to write the “ping-pong” of
open subsets involved more clearly.



3 1. Birational geometry

Let φ : Y→ X be a rational map and let y denote the generic point of Y. Then f(y) = g(y) if f and
g are representatives of φ, hence x = φ(y) is well-defined; so is the local morphism φ∗ : OX,x → OY,y

induced by φ. In both cases, this is because any non-empty open of a k-variety contains its generic
point.

The following lemma is a reformulation of Lemma 1.1.

Lemma 1.6. Let X and Y be k-varieties; denote by y the generic point of Y and by R(Y,X) the set
of rational maps from Y to X and by S the set of pairs (x, f) where x ∈ X and f is a local morphism
from OX,x to OY,y. Then the map φ 7→ (x, φ∗ : OX,φ(y) → OY,y) is a bijection from R(Y,X) to S.

Dominant rational maps.

Lemma 1.7. Let X and Y be k-varieties and let f : Y → X be a morphism of k-schemes. Then the
following assertions are equivalent.

• The image of the generic point of Y by f is the generic point of X.

• The set-theoretic image of f , that is, f(Y) = {f(y), y ∈ Y}, is dense in X.

Proof. Let y be the generic point of Y. Then

f(Y) = {f(y)}.

Indeed, the inclusion {f(y)} ⊆ f(Y) is obvious while, since f is continuous, f(Y) = f({y}) ⊆ {f(y)}
hence f(Y) ⊆ {f(y)}. The claim now follows from the fact that given an irreducible scheme X and
any point x ∈ X, the equality {x} = X holds if, and only if, x is the generic point of X.

Definition 1.8. A morphism of schemes f : Y → X is dominant if f(Y) is dense in X. The above
lemma shows that if Y and X are k-varieties, then f is dominant if, and only if, f sends the generic
point of Y to the generic point of X.

A rational map φ : Y 99K X is dominant if φ has a dominant representative; if so, then any
representative of φ is dominant.

Let φ : Y→ X be a dominant rational map. Then by Lemma 1.6, φ comes from a unique k-algebra
homomorphism k(X) → k(Y). This correspondence should come from an equivalence of categories,
hence the desire for a category of dominant rational maps.

Definition 1.9. Let φ : Y 99K X be a rational map. Let y ∈ Y; then φ is defined at y if there exists
a representative f : U → X of φ such that y ∈ U. The domain of definition of φ is the set of points
at which φ is defined: since it is given by ⋃

(f :U→X)∈φ

U,

it is an open subset of Y.

Lemma 1.10. Let φ : Y 99K X be a rational map with domain of definition U. Then φ has a unique
representative f : U→ X.

Proof. It suffices to show that any two representatives f : V→ X and f ′ : V′ → X agree on V∩V′. Let
e : Z→ V∩V′ be the equalizer of f and f ′ in the category of k-schemes. Then e is a closed immersion
because X is separated by hypothesis ([Sta23, Tag 01KM]). On the other hand, Z contains an open
subset of V∩V′ by definition. Consequently, Z is equal to V∩V′ topologically thus scheme-theoretically
as Y is integral hence reduced.

https://stacks.math.columbia.edu/tag/01KM


4 2. Near-rationality

In general, one cannot compose rational maps: the problem is that the image of the first might
not meet the domain of definition of the second in case the image of the first lies in a strict closed
subset. Thus it should be no surprise that one can compose a dominant rational map with any rational
map. Namely let ψ : Z → Y be a dominant rational map and let φ : Y → X be a rational map. Let
g : W→ Y be a representative of ψ and let f : V→ X be a representative of φ. Then g−1(V) = W′ is
a non-empty open subset of W: indeed, since g is dominant, the generic point z ∈W of Z is mapped
to the generic point y ∈ V. We define φ ◦ψ as the rational map determined by f ◦ g|W′ . In particular,
we obtain a category Rk whose objects are k-varieties and whose morphisms are dominant rational
maps.

Proposition 1.11. Let Fk be the category of field extensions of k of finite type. Then the functor
Rk → Fk sending X to k(X) and φ : Y→ X to φ∗ : k(X)→ k(Y) is an equivalence of categories.

Proof. By now, it suffices to check that the functor is essentially surjective. If K/k is a field ex-
tension of finite type, then K = k(y1, . . . , yn) for some elements yi ∈ K. Now K = k(X) where
X = Spec k[y1, . . . , yn].

2. Near-rationality
The following definition gives variation on the theme of rationality, that is, birationality to projective
space.

Definition 2.1. Let X be a k-variety. Then X is called:

i) k-rational if X is k-birational to Pn, in other words, if k(X) is a purely transcendental extension
of k or, equivalently, if some open subset of X is isomorphic to some open subset of Pn for some
n;

ii) stably k-rational if there exists n ⩾ 0 such that X× Pn4 is k-rational;

iii) a direct factor of a k-rational variety or simply factor k-rational if there exists a k-variety Y
such that X×Y is a k-rational variety;

iv) retract k-rational if there exists an open subscheme U of X such that there is a factorisation

U U

V

where V is an open subscheme of the affine n-space An
k , in other words, if X is a retract of An

k

in Rk or equivalently of a k-rational variety;

v) (separably) k-unirational if k(X) is a subfield of a transcendental extension of k (that is separable
over k(X)) or equivalently if there exists a (separable) dominant rational map5 from a projective
space to X;

vi) separably rationally connected if there is a k-variety Y and a morphism u : Y × P1 → X such
that the map u(2) : U×Y U→ X×X is dominant and smooth at the generic point.6

We say that X is rational if X×k Spec k is k-rational for an algebraic closure k of k.

Example 2.2. Any open subscheme of affine n-space is k-rational. In fact, X is k-rational if, and
only if, X has a non-empty open subset isomorphic to an open subscheme of an affine space.

4This scheme is indeed a k-variety.
5The separability condition only depends on the induced field extension of rational functions and hence is indeed a

property of rational maps (as opposed to morphisms).
6The scheme U×Y U is isomorphic to P1 ×U and is thus integral: indeed, P1 ×Z is integral if Z is an integral k-scheme

which implies that U = P1 × Y is integral; hence, so is U × P1.



5 2. Near-rationality

Lemma 2.3. Let X be a k-variety. Then in the above definition, each of the first four conditions on
X implies the next. If X is separably k-unirational, then X is separably rationally connected.

The following proof is that of [CS06, Proposition 1.4]

Proof. Only the fact that iii) implies iv) merits a proof for the first assertion. Let then Y be a k-variety
such that X × Y is a k-rational variety. Let U be a non-empty open subscheme of X × Y which is
isomorphic to an open subscheme of an affine space. Let (x0, y0) ∈ U(k)7. There exists a non-empty
open subscheme X1 such that X1 × {y0} = U ∩ (X × {y0}). The set U1 = U ∩ (X1 × Y) is open in U
and is thus isomorphic to an open subset of affine space. The map

X1
(x,y0)−−−→ U1 → X1

where the second map is induced by projection on X1 is the expected retraction.
For the second claim, the authors of the article provide a reference to Kollár’s book where the

result is stated without proof.

Example 2.4. We mention a few themes on near k-rationality.

• The Zariski or birational cancellation problem asked whether stably k-rational varieties are
rational. This turns out to be false, even over C as shown by Beauville, Colliot-Thélène, Sansuc
and Swinnerton-Dyer. See [AM11, Example 2.3.4].

• If k is not algebraically closed, then there exist varieties that are factor k-rational yet not stably
k-rational as shown by Colliot-Thélène and Sansuc. See [AM11, Example 2.3.5].

• Saltman introduced retract k-rationality in relation to Noether’s problem regarding the ratio-
nality of fields of the form k(V)G where G is a group acting on V.

• A notion of rational connectedness was introduced by Campana, Kollár, Miyaoka and Mori for
fields of characteristic 0 but makes sense over any field. It is equivalent to separable rational
connectedness if the base field is of characteristic 0 but is more well-behaved if the characteristic
of k is positive. At the time of the publication of Asok and Morel’s work, it was unknown
whether separably rational connected varieties that are not unirational exist (the author does
not know whether this has changed).

Near rationality and A1-connectedness

We now relate (weak) A1-connectedness with rationality properties of algebraic varieties. For k alge-
braically closed of characteristic 0, it was initially hoped that A1-connectedness would be equivalent
to separable rational connectedness but we shall see obstructions for this to be true in this and future
talks of different natures.

Proposition 2.5 ([CS77, Proposition 10]). Let k be a perfect field. Let Y and X be geometrically
irreducible8 smooth proper k-varieties. Assume that either:

1. the morphism f is a blow-up of X at a smooth closed subscheme Z of codimension r + 1.

2. the field k is of characteristic 0 and that f is any birational morphism.

Then for any finitely generated separable field extension L/k, f induces a map of A1-equivalence classes
of L-points Y(L)/∼ → X(L)/∼ and this map is a bijection. Hence, Y is A1-chain connected if, and
only if, X is A1-chain connected.

7Such an (x0, y0) exists as soon as k is infinite. If k is finite, the complement of kn in An
k is obviously an open subset

without k-points. We do not know whether the assertion that iii) implies iv) holds if k is finite.
8We were unable to clarify what happens with A1-equivalence classes of L-rational points for field extensions L/k

without this hypothesis.



6 2. Near-rationality

Proof. The fact that f induces a map is quite general. Let us first assume that we are in the case 1.
Note that since the assumptions are stable under base change, we can restrict our attention to the case
where L = k. We then follow the proof of [CS77]. To prove that the map Y(k)/∼ → X(k)/∼ induced
by f is surjective, it suffices to show that the map f(k) : Y(k) → X(k) induced by f on k-rational
points is surjective. But by assumption on f , for any x ∈ X(k), the morphism f−1(x) → Spec k is
either an isomorphism (if x does not belong to Z) or, up to k-isomorphism, the structure morphism
Pd

k → Spec k. In any case, it is non-empty as claimed.
Let us now show that the map Y(k)/∼ → X(k)/∼ is injective. We first prove the following result:

Lemma 2.6. Let h : A1
k → X be an A1-elementary equivalence between k-points x and x′. Then there

exists a sequence (y0, . . . , yr) of k-rational points of Y and for each i, an elementary A1-equivalence
between yi and yi+1, such that f(y0) = x and f(yr) = x′.

Proof. We have that there exist y0, . . . , yr with y0 = y and yr = y′, and an elementary A1-equivalence
from yi to yi+1 for all i < r.

First assume that the image of h is not contained in Z. Then there is a unique lift H : A1
k → Y of

h along f .9. The point H(0) (respectively H(1)) lies over x (respectively y) as required.
Let us then assume that h(A1

k) is contained in Z. First assume that x and x′ both belong to some
open U of Z such that U×X Y is k-isomorphic to U×Pr

k. Fix a ∈ Pr(k); then the formula t 7→ (h(t), a)
is well-defined on a non-empty open subset of A1, namely the inverse image of U by h, which contains
0 and 1 as x and x′ belong to U, hence it extends to a map H : A1

k → Y by properness of Y. Then
f(H(0)) = f((h(0), a)) = h(0) = x and f(H(1)) = f((h(1), a)) = h(1) = x′ as required.

Now in general, by definition of blow-ups, Z may be covered by a finite number of open subsets
with the same property as the open U above, which concludes the proof.

Now let y and y′ be k-points of Y such that f(y) = x and f(y′) = x′ are A1-equivalent. By
assumption, there exists a sequence (x0, . . . , xr) of k-points of X such that x0 = x and xr = x′ and
for each i < r, an elementary A1-equivalence between xi and xi+1. For each i, there exists a family
(yi

0, . . . , y
i
si

) of k-points of Y such that f(yi
0) = xi and f(yi

si
) = xi+1 and an elementary A1-equivalence

between yi
j and yi

j+1. Now as we have observed, the fibres of f over k-points are either a point or an
r-dimension projective space: as a result, they are A1-chain connected so that there is an elementary
A1-equivalence between yi

si
and yi+1

0 for all i, as well elementary A1-equivalences between y and y0
0

and between yr
sr

and y′. Chaining these together, we see that y ∼ y′ as required.
Now we treat the case 2, that is, we assume that f is birational and that k is of characteristic 0.

By Hironaka’s resolution of singularities [Hir69], there exists a diagram:

Y′ X′

Y X

of birational morphisms, where the vertical maps are obtained as compositions of blow-ups as in Case
1. It then follows that in the induced commutative diagram of sets:

Y′(k)/∼ X′(k)/∼

Y(k)/∼ X(k)/∼

the vertical maps are bijections. Hence the diagonal map is a bijection (it is a surjection by the left
triangle and an injection by the right triangle), thus the horizontal maps, in particular, the bottom
one, is a bijection.

9Indeed, the k(t)-point η of A1 is not sent to a point in Z, for otherwise, h(A1) = h(η) would also be included in Z
(which is closed): this is forbidden by assumption. This k(t)-point lifts to a point of Y because blow-ups are surjective
on K-rational points for any K/k, hence a morphism H : A1

k → Y by properness of Y. The maps f ◦ H and h agree at the
generic point by assumption hence on a non-empty open subset of A1

k thus on A1
k since A1

k is reduced and Y is separated.
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Corollary 2.7. Under the hypotheses of 1. in the previous proposition above, X is (weakly) A1-chain
connected if, and only if, Y is (weakly) A1-chain connected.

Definition 2.8. We say that weak factorisation holds over k in dimension n if given any two k-
birationally equivalent smooth proper varieties X and X′ of dimension n, there exist smooth proper
k-varieties Z1, . . . ,Zn,X1, . . . ,Xn of dimension n and a diagram

X← Z1 → X1 ← Z2 → · · · ← Zn−1 → Xn ← Zn → X′

with every morphism of with source Zi a blow-up at a smooth center.

Example 2.9. If k is of characteristic 0, then weak factorisation holds over k in dimension n for all
n by [Abr+02].

Theorem 2.10 ([AM11, Theorem 2.3.6]). Let k be a perfect field and assume that weak factorisation
holds over k in dimension n.

i) If X and X′ are smooth proper k-varieties of dimension n and if X and X′ are k-birationally
equivalent, then X is (weakly) A1-chain connected if, and only if, X′ is (weakly) A1-chain con-
nected.

Assume further that k is of characteristic 0.

ii) If X is a retract k-rational geometrically irreducible variety, then X is A1-chain connected, hence
A1-connected.

Before we proceed to the proof, we make an observation. Assume for a moment that k is of
characteristic 0. Let φ : Y 99K X be a rational map between geometrically irreducible varieties.
Let f : V → X be a representative of f with V ⊆ Y open. By our assumptions on schemes, more
specifically, because X → Spec k is separated, the graph morphism Γf : V → V × X is a closed
immersion. Let Γ denote its image, which is closed in V×X, and let Γ denote its (reduced) closure in
Y ×X. Again, by Hironaka’s work [Hir69], Γ admits a resolution of singularities, that is, there exists
a smooth geometrically irreducible k-variety Y′ and a proper birational morphism p : Y′ → Γ which
may be viewed as a map π : Y′ → Y×X, yielding morphisms Y′ → Y and Y′ → X via the projections.
Let us make a few comments.

• The projection map induces an isomorphism pr : Γ → V. Consequently, if V is smooth, for
instance if Y is smooth, then Γ is a smooth open subset of Γ and still according to Hironaka’s
result, there is an induced isomorphism (pr ◦ p)−1(V) → V. In any case, since p is birational,
pr ◦ p is also birational and so is the morphism Y′ → Y as a result.

• Let W be an open subset of V such that the map Y′ → Y is an isomorphism on W (W can be
taken equal to V if V is smooth, for instance if Y is smooth). Then the map W → Y′ → X is
the restriction of f to W by definition. Hence the map Y′ → Y, which is birational, induces an
isomorphism Y 99K Y′ in Rk and the following diagrams

Y X

Y′

W X

Y′

are commutative.

We believe this construction is what the authors refer to as resolution of indeterminacy in the proof
of [AM11, Theorem 2.3.6]. In that case, the map f : V → X factors through an open subset of U of
X and by assumption, there exists g : U → V such that f ◦ g = IdU. Then the above construction,
applied to the rational map X 99K Y 99K Y′ induced by U → V 99K Y′, yields a smooth k-variety X′

and morphisms X′ → X and X′ → Y′ such that the map X′ → X is birational. We therefore get a
commutative diagram:
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X Y X

X′ Y′

in Rk, where the vertical arrows are isomorphisms in Rk, that is, birational morphisms. In particular,
if U is smooth (for instance if X is smooth), then X′ → X is an isomorphism on U and the induced map
U → X′ → Y′ → X is none other than f ◦ g, namely IdU. In particular, the morphism X′ → Y′ → X
is an isomorphism on U and is therefore birational.

Proof of Theorem 2.10. By the assumption that weak factorisation holds over k in dimension n, Claim
i) reduces to Case 1. in Proposition 2.5.

Let us establish ii): henceforth, we assume that k is of characteristic 0. There exists an open
subscheme U ⊆ X and an open subscheme V of Am such that IdU : U → U factors through V. As
discussed above, there exists a commutative diagram

X Am X

X′ Y′

whose solid arrows are scheme morphisms and whose vertical arrows are birational morphisms. More-
over, the morphisms is birational. Now let L be a finitely generated separable extension. Since Am is
A1-chain connected, Am(L)/∼ = ∗ so that Y′(L)/∼ = ∗ by Case 2. in Proposition 2.5 (which we may
apply since the varieties considered are all geometrically irreducible). By the same case, the composite
map

X′(L)/∼ → Y(L)/∼ → X(L)/∼

is a bijection. In particular, the map Y(L)/∼ → X(L)/∼ is surjective hence X(L)/∼ = ∗ and X is
A1-chain connected as required.

Since weak factorisation holds over k in dimension 2, that is, for surfaces for any k perfect, the
following also holds:

Corollary 2.11 ([AM11, Corollary 2.3.7]). If k is perfect, then any k-rational smooth proper surface
is A1-connected.

Let now ks be a separable closure of k. Let X be a k-variety and let x ∈ X(ks). Then X is strongly
rationally connected relative to x if for any ks-point y of X, x and y lie in the image of a morphism
P1 → X; X is strongly rationally connected if there is a dense open subset U of X such that X is
strongly rationally connected relative to x for all x ∈ U(ks)10. The theorem below [AM11, Theorem
2.3.9] is claimed to follow from the definitions, from the fact that weak A1-chain connectedness implies
weak A1-connectedness and from the fact that strong rational connectedness for a smooth proper k-
variety is invariant under separably closed extension (we tried to check the reference to [Kol96] given
for this last fact but were unable to find it).

Suppose that k is perfect. Then any strongly rationally connected smooth proper k-
variety is weakly connected.

The following is proposed as a corollary [AM11, Corollary 2.3.10] but we were again unable to find
an argument (we believe that the argument is that a strongly rationally connected variety is separably
rationally connected but we do not know enough to ensure the accuracy of this belief).

Suppose that k is perfect. Then any separably rationally connected smooth proper
k-variety is weakly A1-connected.

10This reflects the author’s understanding of the definition but is not the definition given in the reference [HT08]
provided in [AM11]. In [HT08], one only asks that any point of X may be joined to the generic point of X by a rational
curve P1 → X in x. The setting is slightly different, however, since we believe the general assumption in [HT08] is that
k is algebraically closed of characteristic 0.
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Finally, let us mention that at the time of publication of [AM11], it was unknown whether A1-chain
connectedness is equivalent to retract k-rationality.

3. Comparison results

3.1 Comparison with étale A1-connectedness

In this section, we compare A1- and étale A1-connectedness (recall that the first notion refers to the
Nisnevich topology).

Let α : (Smk)ét → (Smk)Nis denote the morphism of sites induced by the identity of Smk: this
is well-defined because the Nisnevich topology is weaker than the étale topology. The map α∗ is the
identity on sheaves (more precisely, it sends an étale sheaf to the underlying Nisnevich sheaf) and the
map α∗ is the étale sheafification functor. They induce functors

α∗ : Spcét
k → Spck, α∗ : Spck → Spcét

k

between categories of simplicial sheaves. These functors form a Quillen adjunction which induces an
adjunction

α∗ : Hét(k)→ HNis(k), Rα∗ : HNis(k)→ Hét(k)

where Rα∗ is the right derived functor of α∗.
Now let X be a simplicial étale sheaf on Smk. By adjunction, we have a bijection

HomHét(k)(U,X )
∼=−→ [U,Rα∗X ]A1

(indeed, since the étale topology is sub-canonical, α∗U = U); here recall that

[U,Rα∗X ]A1 = HomH(k)(U,Rα∗X )

where H(k) is constructed using the Nisnevich topology. Now the unit map X → α∗Rα∗X 11 of the
adjunction provides a map

[U,X ]A1 → [U,Rα∗X ]A1 → HomHét(k)(U,X ).

Let aétπ
A1
0 (X ) be the étale sheafification of the presheaf U 7→ [U,X ]A1 . Then sheafification yields a

morphism
aétπ

A1
0 (X )→ πA

1,ét
0 (X )

of étale sheaves. The authors then make the following claim [AM11, Lemma 2.4.1].

Lemma 3.1 ([AM11, Lemma 2.4.1]). The morphism aétπ
A1
0 (X )→ πA

1,ét
0 (X ) is an epimorphism of

étale sheaves. Hence if the simplicial Nisnevich sheaf underlying X is A1-connected, then X is étale
A1-connected.

Proof. This morphism factors as

aétπ
A1
0 (X )→ aétπ

A1
0 (Rα∗X )→ πA

1,ét
0 (X )

where the second is a section-wise bijection at the level of presheaves hence it suffices to show that the
first one is an epimorphism of étale sheaves. To do this, we prove that it is an epimorphism stalk-wise.
Let LA1 denote the Nisnevich A1-localisation functor. Then we have a commutative diagram:

X Rα∗X

LA1X LA1Rα∗X

11This is thus a morphism in the homotopy category.
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It suffices to show that the bottom horizontal map induces an epimorphism of sheaves of étale simplicial
connected components. Since the vertical maps are epimorphisms at étale stalks by the étale A1-0-
connectedness theorem, it suffices to show that this property holds for the top horizontal map. But
Rα∗ = α∗ ◦ Exét where Exét is the étale simplicial fibrant replacement functor so that the map
X → Rα∗X is a fibrant replacement functor for simplicial sets at étale stalks: as such, it is 0-
connected which implies the desired property.

Although we were not able to verify it, this lemma is claimed by the authors to imply that a variety
that becomes A1-connected over a separable closure of k is étale A1-connected. The authors provide
an example [AM11, Example 2.4.2] of an R-variety which is claimed to be étale A1-connected because
it is A1-connected after extension of scalars to C but is certainly not A1-connected as can be deduced
from the disconnectedness of its real topological realisation.

3.2 A1-connectedness and A1-chain connectedness

Recall that given a space X , πch
0 (X ) denotes the sheaf πs

0(SingA1(X )), where SingA1(X ) is Suslin–
Voevodsky’s singular construction, that is, the simplicial Nisnevich sheaf given by

U 7→ HomSmk
(U×∆•,X ).

Then the proof of the following theorem is a major goal of the paper. Recall that by the unstable A1-
0-connectivity theorem, given any space X , there is an epimorphism πch

0 (X )→ πA
1

0 (X ) of Nisnevich
sheaves.

Theorem 3.2 ([AM11, Theorem 2.4.3]). Let X be a proper scheme of finite type over k. Then the
canonical epimorphism πch

0 (X)→ πA
1

0 (X) induces a bijection πch
0 (X)(L)→ πA

1
0 (X)(L) for any finitely

generated separable extension L/k.

Several corollaries are mentioned.

Corollary 3.3 ([AM11, Corollary 2.4.4]). If X is a smooth proper scheme over k, then X is A1-chain
connected if, and only if, X is A1-chain connected.

Proof. As we have already seen in the last talk (see [AM11, p. 2.2.7]), if X is A1-chain connected, then
X is A1-connected (in fact, no smoothness hypothesis is required for this implication). Reciprocally,
the above theorem shows that if X is A1-connected, then π0(X)(L) = X(L)/∼ is trivial for all L/k
finitely generated and separable. Hence X is A1-chain connected by definition.

The authors also make the following claim:

If X is smooth and proper over k, then X is separably rationally connected if, and only if,
X is weakly A1-connected.

Again, as observed above for one direction, either sense of this equivalence likely appeals to results
about birational geometry which we do not know.

Corollary 3.4 ([AM11, Corollary 2.4.6]). Let k be a field of characteristic 0. Let X and X′ be
k-birationally equivalent smooth proper varieties. Then X is A1-connected if, and only if, X′ is A1-
connected.

Proof. This follows from Example 2.9 and Theorem 2.10.

The following is claimed to be a corollary of the above theorem but again, it seems to rely on
properties of separably rationally connected varieties that are unknown to the author; e.g. that if k
is of characteristic 0, then A1-chain connected varieties should be separably rationally connected. As
such, we were unable to verify it.

Let X be a smooth proper k-variety, with k algebraically closed of characteristic 0. Assume
that dim X ⩽ 2. Then X is A1-connected if, and only if, X is rational.
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The fact that separably rationally connected surfaces are rational if k is algebraically closed is an
exercise in [Kol96] is indeed crucial to the proof given in [AM11].

The final claim [AM11, Corollary 2.4.9] has to do with compactifications. To this end, recall the
R-relation of Manin defined on the set of L-points of a scheme X. Let L/k be a seperable, finite-type
extension. We say that points x and x′ of X(L) are R-equivalent if there exists an open subscheme
U of P1

L containing 0 and ∞ and an L-morphism h : U → X such that u(0) = x and u(∞) = 1. We
then denote by R the equivalence relation on X(L) generated by R-equivalence: X(L)/R is the set
of R-equivalence classes of L-points of X. Clearly, A1-equivalent L-points are R-equivalent, hence a
surjective map X(L)/∼ → X(L)/R. This map is a bijection if X is proper over k. In any case, we have
a commutative diagram:

X(L)

X(L)/R X(L)/∼ πA
1

0 (X)(L)

where the vertical and left diagonal maps are quotient maps, hence surjective maps, and the right
horizontal map is known to be surjective. In particular, the right diagonal map is surjective.

Corollary 3.5 ([AM11, Corollary 2.4.9]). Let k be a field of characteristic 0. Let X be an object of
Smk and let j : X ↪→ X be an open immersion into a smooth proper variety. Then for any finitely
generated, separable extension L/k, the image of the map πA1

0 (X)(L)→ πA
1

0 (X)(L) = X(L)/∼ coincides
with X(L)/R. In particular, for any X ∈ Smk, the map X(L)→ X(L)/R factors through the surjective
map X(L)→ πA

1
0 (X)(L).

Proof. There is a commutative diagram:

X(L)

X(L)/R X(L)/∼ πA
1

0 (X)(L)

X(L)/R X(L)/∼ πA
1

0 (X)(L)

pR

e

j∗ j∗ j∗

qR

ρ

induced by functoriality of all the constructions involved. We are trying to identify the image of the
right vertical map. Note that Theorem 3.2 states that the bottom right horizontal map is a bijection
and since X is proper over k, the bottom left horizontal map is actually a bijection. Hence all bottom
horizontal maps are bijections and this ensures that given f ∈ πA1

0 (X)(L), j∗f = j∗ξ where ξ = pR(x)
for any x ∈ X(L) such that e(x) = f , modulo these bijections, which establishes the claim.
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