Smooth varieties up to \mathbb{A}^{1}-homotopy and algebraic h-cobordisms, after Asok-Morel

Niels Feld

23 February 2023

- Problems in (classical) geometric topology:
- Problems in (classical) geometric topology:
(i) Classify n-dimensional manifold (smooth, compact, without boundary) up to diffeomorphism.
- Problems in (classical) geometric topology:
(i) Classify n-dimensional manifold (smooth, compact, without boundary) up to diffeomorphism.
(ii) Classify n-dimensional manifold up to homotopy equivalence.
- Problems in (classical) geometric topology:
(i) Classify n-dimensional manifold (smooth, compact, without boundary) up to diffeomorphism.
(ii) Classify n-dimensional manifold up to homotopy equivalence.
- Problems in algebraic geometry:
- Problems in (classical) geometric topology:
(i) Classify n-dimensional manifold (smooth, compact, without boundary) up to diffeomorphism.
(ii) Classify n-dimensional manifold up to homotopy equivalence.
- Problems in algebraic geometry:
(i') Classify smooth proper varieties over a fixed field k up to isomorphism.
- Problems in (classical) geometric topology:
(i) Classify n-dimensional manifold (smooth, compact, without boundary) up to diffeomorphism.
(ii) Classify n-dimensional manifold up to homotopy equivalence.
- Problems in algebraic geometry:
(i') Classify smooth proper varieties over a fixed field k up to isomorphism.
(ii') Classify smooth proper k-varieties up to \mathbb{A}^{1}-weak equivalence.
I. Aspects of homotopy theory for schemes
- Let $\left(\mathbf{S m} m_{k}\right)_{\text {ét }}$ and $\left(\mathbf{S} \mathbf{m}_{k}\right)_{N i s}$ denote the category of smooth k-schemes endowed with the structure of a site using either the étale or Nisnevich topology.
- Let $\left(\mathbf{S m} m_{k}\right)_{\text {ét }}$ and $\left(\mathbf{S} \mathbf{m}_{k}\right)_{N i s}$ denote the category of smooth k-schemes endowed with the structure of a site using either the étale or Nisnevich topology.
- We denote by

$$
\begin{equation*}
\alpha:\left(\mathbf{S m}_{k}\right)_{\text {ét }} \longrightarrow\left(\mathbf{S m}_{k}\right)_{N i s} \tag{1}
\end{equation*}
$$

the morphism of sites induced by the identity functor.

- Let $\left(\mathbf{S m} \boldsymbol{m}_{k}\right)_{\text {ét }}$ and $\left(\mathbf{S} \boldsymbol{m}_{k}\right)_{N i s}$ denote the category of smooth k-schemes endowed with the structure of a site using either the étale or Nisnevich topology.
- We denote by

$$
\begin{equation*}
\alpha:\left(\mathbf{S m}_{k}\right)_{\text {ét }} \longrightarrow\left(\mathbf{S m}_{k}\right)_{N i s} \tag{1}
\end{equation*}
$$

the morphism of sites induced by the identity functor.

- Write $\mathcal{S p c} c_{k}^{\tau}$ for the category of simplicial sheaves on $\boldsymbol{S m}_{k}$ equipped with the topology τ where τ denotes either the Nisnevich or étale topologies.
- Let $\left(\mathbf{S m} m_{k}\right)_{\text {ét }}$ and $\left(\mathbf{S} \mathbf{m}_{k}\right)_{N i s}$ denote the category of smooth k-schemes endowed with the structure of a site using either the étale or Nisnevich topology.
- We denote by

$$
\begin{equation*}
\alpha:\left(\mathbf{S m}_{k}\right)_{\text {ét }} \longrightarrow\left(\mathbf{S m}_{k}\right)_{N i s} \tag{1}
\end{equation*}
$$

the morphism of sites induced by the identity functor.

- Write $\mathcal{S p c} c_{k}^{\tau}$ for the category of simplicial sheaves on $\mathbf{S m}_{k}$ equipped with the topology τ where τ denotes either the Nisnevich or étale topologies.
- We have functors

$$
\begin{align*}
& \alpha_{*}: \mathcal{S} p c_{k}^{\text {ét }} \longrightarrow \mathcal{S} p c_{k}, \text { and } \\
& \alpha^{*}: \mathcal{S} p c_{k} \longrightarrow \mathcal{S} p c_{k}^{\text {ét }} \tag{2}
\end{align*}
$$

Definition

Given a morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c} c_{k}^{\tau}$, we say that f is a

Definition

Given a morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c} c_{k}^{\tau}$, we say that f is a

- simplicial weak equivalence, if the morphisms of stalks induced by f are weak equivalences of simplicial sets,

Definition

Given a morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S}_{p c_{k}^{\tau}}^{\tau}$, we say that f is a

- simplicial weak equivalence, if the morphisms of stalks induced by f are weak equivalences of simplicial sets,
- a simplicial cofibration, if f is a monomorphism, and

Definition

Given a morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c}_{k}^{\tau}$, we say that f is a

- simplicial weak equivalence, if the morphisms of stalks induced by f are weak equivalences of simplicial sets,
- a simplicial cofibration, if f is a monomorphism, and
- a simplicial fibration, if f has the right lifting property with respect to acyclic simplicial cofibrations, i.e., those morphisms that are simultaneously simplicial weak equivalences and simplicial cofibrations.

Definition

Given a morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c} c_{k}^{\tau}$, we say that f is a

- simplicial weak equivalence, if the morphisms of stalks induced by f are weak equivalences of simplicial sets,
- a simplicial cofibration, if f is a monomorphism, and
- a simplicial fibration, if f has the right lifting property with respect to acyclic simplicial cofibrations, i.e., those morphisms that are simultaneously simplicial weak equivalences and simplicial cofibrations.
Write W_{s}, C_{s} and F_{s} for the resulting classes of morphisms.

Definition

- The τ-simplicial homotopy category, denoted $\mathcal{H}_{s}^{\tau}(k)$, is defined by

$$
\begin{equation*}
\mathcal{H}_{s}^{\tau}(k):=\mathcal{S} p c_{k}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] . \tag{3}
\end{equation*}
$$

Definition

- The τ-simplicial homotopy category, denoted $\mathcal{H}_{s}^{\tau}(k)$, is defined by

$$
\begin{equation*}
\mathcal{H}_{s}^{\tau}(k):=\mathcal{S} p c_{k}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] . \tag{3}
\end{equation*}
$$

- Similarly:

$$
\begin{equation*}
\mathcal{H}_{s, \bullet}^{\tau}(k):=\mathcal{S} p c_{k, \bullet}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] . \tag{4}
\end{equation*}
$$

Definition

- The τ-simplicial homotopy category, denoted $\mathcal{H}_{s}^{\tau}(k)$, is defined by

$$
\begin{equation*}
\mathcal{H}_{s}^{\tau}(k):=\mathcal{S} p c_{k}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] . \tag{3}
\end{equation*}
$$

- Similarly:

$$
\begin{equation*}
\mathcal{H}_{s, \bullet}^{\tau}(k):=\mathcal{S} p c_{k, \bullet}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] . \tag{4}
\end{equation*}
$$

- Given $\mathcal{X}, \mathcal{Y} \in \mathcal{S p c} c_{k}^{\tau}$ we write

$$
[\mathcal{X}, \mathcal{Y}]_{s, \tau}
$$

for the set of homomorphisms between \mathcal{X} and \mathcal{Y} in $\mathcal{H}_{s}^{\tau}(k)$.

Definition

- The τ-simplicial homotopy category, denoted $\mathcal{H}_{s}^{\tau}(k)$, is defined by

$$
\begin{equation*}
\mathcal{H}_{s}^{\tau}(k):=\mathcal{S} p c_{k}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] \tag{3}
\end{equation*}
$$

- Similarly:

$$
\begin{equation*}
\mathcal{H}_{s, \bullet}^{\tau}(k):=\mathcal{S} p c_{k, \bullet}^{\tau}\left[\mathrm{W}_{s}^{-1}\right] . \tag{4}
\end{equation*}
$$

- Given $\mathcal{X}, \mathcal{Y} \in \mathcal{S p c} c_{k}^{\tau}$ we write

$$
[\mathcal{X}, \mathcal{Y}]_{s, \tau}
$$

for the set of homomorphisms between \mathcal{X} and \mathcal{Y} in $\mathcal{H}_{s}^{\tau}(k)$.

- Similarly:

$$
[(\mathcal{X}, x),(\mathcal{Y}, y)]_{s, \tau} .
$$

Definition

An object $\mathcal{X} \in \mathcal{S p c} c_{k}^{\tau}$ is called τ - \mathbb{A}^{1}-local if, for any object $\mathcal{Y} \in \mathcal{S} p c_{k}^{\tau}$, the canonical map

$$
\begin{equation*}
[\mathcal{Y}, \mathcal{X}]_{\tau, s} \longrightarrow\left[\mathcal{Y} \times \mathbb{A}^{1}, \mathcal{X}\right]_{\tau, s}, \tag{5}
\end{equation*}
$$

induced by pullback along the projection $\mathcal{X} \times \mathbb{A}^{1} \rightarrow \mathcal{X}$, is a bijection.

Definition

A morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c} c_{k}^{\tau}$ is called

- a τ - \mathbb{A}^{1}-weak equivalence if for any \mathbb{A}^{1}-local $\mathcal{Z} \in \mathcal{S p c} c_{k}^{\tau}$ the map

$$
\begin{equation*}
f^{*}:[\mathcal{Y}, \mathcal{Z}]_{s, \tau} \longrightarrow[\mathcal{X}, \mathcal{Z}]_{s, \tau} \tag{6}
\end{equation*}
$$

is a bijection. If τ denotes the Nisnevich topology, we drop it from the notation.

Definition

A morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c} c_{k}^{\tau}$ is called

- a τ - \mathbb{A}^{1}-weak equivalence if for any \mathbb{A}^{1}-local $\mathcal{Z} \in \mathcal{S} p c_{k}^{\tau}$ the map

$$
\begin{equation*}
f^{*}:[\mathcal{Y}, \mathcal{Z}]_{s, \tau} \longrightarrow[\mathcal{X}, \mathcal{Z}]_{s, \tau} \tag{6}
\end{equation*}
$$

is a bijection. If τ denotes the Nisnevich topology, we drop it from the notation.

- an \mathbb{A}^{1}-cofibration if it is a simplicial cofibration (i.e., a monomorphism), and

Definition

A morphism $f: \mathcal{X} \rightarrow \mathcal{Y}$ in $\mathcal{S p c} c_{k}^{\tau}$ is called

- a τ - \mathbb{A}^{1}-weak equivalence if for any \mathbb{A}^{1}-local $\mathcal{Z} \in \mathcal{S p c} c_{k}^{\tau}$ the map

$$
\begin{equation*}
f^{*}:[\mathcal{Y}, \mathcal{Z}]_{s, \tau} \longrightarrow[\mathcal{X}, \mathcal{Z}]_{s, \tau} \tag{6}
\end{equation*}
$$

is a bijection. If τ denotes the Nisnevich topology, we drop it from the notation.

- an \mathbb{A}^{1}-cofibration if it is a simplicial cofibration (i.e., a monomorphism), and
- a τ - \mathbb{A}^{1}-fibration if it has the right lifting property with respect to \mathbb{A}^{1}-acyclic cofibrations, i.e., those maps that are simultaneously \mathbb{A}^{1}-cofibrations and τ - \mathbb{A}^{1}-weak equivalences.
- A space $\mathcal{X} \in \mathcal{S} p c_{k}^{\tau}$ is \mathbb{A}^{1}-fibrant if the map $\mathcal{X} \rightarrow *$ is an \mathbb{A}^{1}-fibration.
- A space $\mathcal{X} \in \mathcal{S} p c_{k}^{\tau}$ is \mathbb{A}^{1}-fibrant if the map $\mathcal{X} \rightarrow *$ is an \mathbb{A}^{1}-fibration.
- More generally, the morphism $\mathcal{X} \rightarrow *$ can be factored functorially as an \mathbb{A}^{1}-acyclic cofibration followed by an \mathbb{A}^{1}-fibration.
- A space $\mathcal{X} \in \mathcal{S} p c_{k}^{\tau}$ is \mathbb{A}^{1}-fibrant if the map $\mathcal{X} \rightarrow *$ is an \mathbb{A}^{1}-fibration.
- More generally, the morphism $\mathcal{X} \rightarrow *$ can be factored functorially as an \mathbb{A}^{1}-acyclic cofibration followed by an \mathbb{A}^{1}-fibration.
- Thus, we obtain an \mathbb{A}^{1}-fibrant resolution functor, i.e., a pair $\left(E x_{\tau, \mathbb{A}^{1}}, \theta_{\tau, \mathbb{A}^{1}}\right)$ consisting of an endo-functor

$$
E x_{\tau, \mathbb{A}^{1}}: \mathcal{S} p c_{k}^{\tau} \rightarrow \mathcal{S} p c_{k}^{\tau}
$$

and a natural transformation

$$
\theta_{\tau, \mathbb{A}^{1}}: I d \rightarrow E x_{\tau, \mathbb{A}^{1}}
$$

such that for any $\mathcal{X} \in \mathcal{S} p c_{k}^{\tau}$, the map $\mathcal{X} \rightarrow E x_{\tau, \mathbb{A}^{1}}(\mathcal{X})$ is an \mathbb{A}^{1}-acyclic cofibration with $E x_{\tau, \mathbb{A}^{1}}(\mathcal{X})$ an \mathbb{A}^{1}-fibrant space.

Definition

Write

$$
\mathcal{H}(k)=\mathcal{S} p c_{k}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right],
$$

Definition

Write
-

$$
\mathcal{H}(k)=\mathcal{S p} c_{k}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right],
$$

$$
\mathcal{H}_{\bullet}(k)=\mathcal{S}_{p c_{k, \bullet}}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right]
$$

Definition

Write

$$
\begin{gathered}
\mathcal{H}(k)=\mathcal{S} p c_{k}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}_{\bullet}(k)=\mathcal{S} p c_{k, \bullet}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}^{\text {et }}(k)=\mathcal{S} p c_{k}^{\text {ét }}\left[\mathrm{W}_{\mathbb{A}^{1}}^{-1}\right],
\end{gathered}
$$

Definition

Write

$$
\mathcal{H}(k)=\mathcal{S p} c_{k}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right],
$$

$$
\mathcal{H}_{\bullet}(k)=\mathcal{S}_{p c_{k, \bullet}}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right]
$$

$$
\mathcal{H}^{\text {et }}(k)=\mathcal{S} p c_{k}^{\text {ét }}\left[W_{\mathbb{A}^{1}}^{-1}\right]
$$

$$
\mathcal{H}_{\bullet}^{\text {ét }}(k)=\mathcal{S}_{p c_{k, \bullet}^{e t t}}^{e}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right] .
$$

Definition

Write

$$
\begin{gather*}
\mathcal{H}(k)=\mathcal{S} p c_{k}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}_{\bullet}(k)=\mathcal{S} p c_{k, \bullet}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}^{\text {et }}(k)=\mathcal{S} p c_{k}^{\text {ett }}\left[\mathrm{W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}_{\bullet}^{\text {et }}(k)=\mathcal{S} p c_{k, \bullet}^{e \mathrm{et}}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right] . \\
L_{\mathbb{A}^{1}}: \mathcal{S} p c_{k}^{\tau} \longrightarrow \mathcal{S} p c_{k}^{\tau} \tag{7}
\end{gather*}
$$

for the left derived functor of $I d$ and call it the \mathbb{A}^{1}-localization functor.

Definition

Write

$$
\begin{gather*}
\mathcal{H}(k)=\mathcal{S} p c_{k}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}_{\bullet}(k)=\mathcal{S} p c_{k, \bullet}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}^{\text {et }}(k)=\mathcal{S} p c_{k}^{\text {ét }}\left[\mathrm{W}_{\mathbb{A}^{1}}^{-1}\right], \\
\mathcal{H}_{\bullet}^{e \mathrm{et}}(k)=\mathcal{S} p c_{k, \bullet}^{e \mathrm{et}}\left[\mathrm{~W}_{\mathbb{A}^{1}}^{-1}\right] . \\
L_{\mathbb{A}^{1}}: \mathcal{S} p c_{k}^{\tau} \longrightarrow \mathcal{S} p c_{k}^{\tau} \tag{7}
\end{gather*}
$$

for the left derived functor of $I d$ and call it the \mathbb{A}^{1}-localization functor.

- $[\mathcal{X}, \mathcal{Y}]_{\mathbb{A}^{1}}$ (resp. $[\mathcal{X}, \mathcal{Y}]_{\mathbb{A}^{1} \text {,ett }}$) for the set of morphisms computed in $\mathcal{H}(k)\left(\right.$ resp. $\left.\mathcal{H}^{\text {ét }}(k)\right)$.

Connectedness in \mathbb{A}^{1}-homotopy theory

Definition

Suppose $\mathcal{X} \in \mathcal{S p} c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {ét }}$).
The sheaf of (étale) simplicial connected components of \mathcal{X}, denoted

$$
\pi_{0}^{s}(\mathcal{X})
$$

(resp. $\pi_{0}^{s, e ́ t}(\mathcal{X})$), is the (étale) sheaf associated with the presheaf

$$
U \mapsto[U, \mathcal{X}]_{s}
$$

(resp. $\left.U \mapsto[U, \mathcal{X}]_{s, \text { ét }}\right)$ for $U \in \mathbf{S m}_{k}$.

Definition

Suppose $\mathcal{X} \in \mathcal{S} p c_{k}$.

- The sheaf of \mathbb{A}^{1}-connected components of \mathcal{X}, denoted $\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})$, is the sheaf associated with the presheaf

$$
\begin{equation*}
U \longmapsto[U, \mathcal{X}]_{\mathbb{A}^{1}} \tag{8}
\end{equation*}
$$

for $U \in S m_{k}$.

Definition

Suppose $\mathcal{X} \in \mathcal{S} p c_{k}$.

- The sheaf of \mathbb{A}^{1}-connected components of \mathcal{X}, denoted $\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})$, is the sheaf associated with the presheaf

$$
\begin{equation*}
U \longmapsto[U, \mathcal{X}]_{\mathbb{A}^{1}} \tag{8}
\end{equation*}
$$

for $U \in \mathcal{S} m_{k}$.

- Similarly, for $\mathcal{X} \in \mathcal{S} p c_{k}^{\text {et }}$, the sheaf of étale \mathbb{A}^{1}-connected components, denoted $\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X})$, is the étale sheaf associated with the presheaf

$$
\begin{equation*}
U \longmapsto[U, \mathcal{X}]_{\mathbb{A}^{1}, \mathrm{e} \mathrm{t}} \tag{9}
\end{equation*}
$$

for $U \in \mathcal{S} m_{k}$.

Remark

Suppose $\mathcal{X} \in \mathcal{S} p c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {ét }}$). If $L_{\mathbb{A}^{1}}(\mathcal{X})$ denotes the \mathbb{A}^{1}-localization functor, then one has by definition

$$
\pi_{0}^{s}\left(L_{\mathbb{A}^{1}}(\mathcal{X})\right)=\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})
$$

$\left(\right.$ resp. $\pi_{0}^{s, \text { ét }}\left(L_{\mathbb{A}^{1}}(\mathcal{X})=\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X})\right)$.

Remark

Suppose $\mathcal{X} \in \mathcal{S} p c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {et }}$). If $L_{\mathbb{A}^{1}}(\mathcal{X})$ denotes the \mathbb{A}^{1}-localization functor, then one has by definition

$$
\pi_{0}^{s}\left(L_{\mathbb{A}^{1}}(\mathcal{X})\right)=\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})
$$

$\left(\operatorname{resp} . \pi_{0}^{s, \text { ét }}\left(L_{\mathbb{A}^{1}}(\mathcal{X})=\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X})\right)\right.$.
(1) The final object Spec k in the category $\mathcal{S p c} c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {et }}$) is simplicially fibrant and \mathbb{A}^{1}-local.

Remark

Suppose $\mathcal{X} \in \mathcal{S p c} c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {et }}$). If $L_{\mathbb{A}^{1}}(\mathcal{X})$ denotes the \mathbb{A}^{1}-localization functor, then one has by definition

$$
\pi_{0}^{s}\left(L_{\mathbb{A}^{1}}(\mathcal{X})\right)=\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})
$$

$\left(\right.$ resp. $\pi_{0}^{s, \text { ét }}\left(L_{\mathbb{A}^{1}}(\mathcal{X})=\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X})\right)$.
(1) The final object Spec k in the category $\mathcal{S p c} c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {et }}$) is simplicially fibrant and \mathbb{A}^{1}-local.
(2) Thus $\pi_{0}^{\mathbb{A}^{1}}(\operatorname{Spec} k)=\operatorname{Spec} k$ and $\pi_{0}^{\mathbb{A}^{1} \text {,ett }}(\operatorname{Spec} k)=\operatorname{Spec} k$.

Remark

Suppose $\mathcal{X} \in \mathcal{S p c} c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {et }}$). If $L_{\mathbb{A}^{1}}(\mathcal{X})$ denotes the \mathbb{A}^{1}-localization functor, then one has by definition

$$
\pi_{0}^{s}\left(L_{\mathbb{A}^{1}}(\mathcal{X})\right)=\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})
$$

$\left(\operatorname{resp} . \pi_{0}^{s, \text { ét }}\left(L_{\mathbb{A}^{1}}(\mathcal{X})=\pi_{0}^{\mathbb{A}^{1} \text {,ett }}(\mathcal{X})\right)\right.$.
(1) The final object Spec k in the category $\mathcal{S p c} c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {et }}$) is simplicially fibrant and \mathbb{A}^{1}-local.
(2) Thus $\pi_{0}^{\mathbb{A}^{1}}(\operatorname{Spec} k)=\operatorname{Spec} k$ and $\pi_{0}^{\mathbb{A}^{1} \text {,ett }}(\operatorname{Spec} k)=\operatorname{Spec} k$.
(3) These two observations allow us to define \mathbb{A}^{1}-homotopic notions of connectedness.

Remark

Suppose $\mathcal{X} \in \mathcal{S p c} c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {et }}$). If $L_{\mathbb{A}^{1}}(\mathcal{X})$ denotes the \mathbb{A}^{1}-localization functor, then one has by definition

$$
\pi_{0}^{s}\left(L_{\mathbb{A}^{1}}(\mathcal{X})\right)=\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})
$$

$\left(\right.$ resp. $\pi_{0}^{s, \text { ét }}\left(L_{\mathbb{A}^{1}}(\mathcal{X})=\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X})\right)$.
(1) The final object Spec k in the category $\mathcal{S p c} c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {et }}$) is simplicially fibrant and \mathbb{A}^{1}-local.
(2) Thus $\pi_{0}^{\mathbb{A}^{1}}(\operatorname{Spec} k)=\operatorname{Spec} k$ and $\pi_{0}^{\mathbb{A}^{1} \text {,ett }}(\operatorname{Spec} k)=\operatorname{Spec} k$.
(3) These two observations allow us to define \mathbb{A}^{1}-homotopic notions of connectedness.
(1) The presheaf $U \mapsto[U, \mathcal{X}]_{\mathbb{A}^{1}}$ is \mathbb{A}^{1}-invariant but not $\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})$ (see [Ayoub]).

Definition

(1) $\mathcal{X} \in \mathcal{S} p c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {ét }}$) is (étale) \mathbb{A}^{1}-connected if the canonical morphism $\mathcal{X} \rightarrow$ Spec k induces an isomorphism of sheaves

$$
\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X}) \xrightarrow{\sim} \operatorname{Spec} k
$$

(resp. isomorphism of étale sheaves $\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X}) \xrightarrow{\sim}$ Spec k).

Definition

(1) $\mathcal{X} \in \mathcal{S} p c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {ét }}$) is (étale) \mathbb{A}^{1}-connected if the canonical morphism $\mathcal{X} \rightarrow$ Spec k induces an isomorphism of sheaves

$$
\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X}) \xrightarrow{\sim} \operatorname{Spec} k
$$

(resp. isomorphism of étale sheaves $\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X}) \xrightarrow{\sim}$ Spec k).
(2) $\mathcal{X} \in \mathcal{S} p c_{k}$ is weakly \mathbb{A}^{1}-connected if the map

$$
\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X}) \rightarrow \operatorname{Spec} k
$$

is an isomorphism on sections over separably closed extensions L / k.

Definition

(1) $\mathcal{X} \in \mathcal{S} p c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {ét }}$) is (étale) \mathbb{A}^{1}-connected if the canonical morphism $\mathcal{X} \rightarrow$ Spec k induces an isomorphism of sheaves

$$
\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X}) \xrightarrow{\sim} \operatorname{Spec} k
$$

(resp. isomorphism of étale sheaves $\pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X}) \xrightarrow{\sim}$ Spec k).
(2) $\mathcal{X} \in \mathcal{S} p c_{k}$ is weakly \mathbb{A}^{1}-connected if the map

$$
\pi_{0}^{\mathbb{A}^{1}}(\mathcal{X}) \rightarrow \operatorname{Spec} k
$$

is an isomorphism on sections over separably closed extensions L / k.
(3) \mathcal{X} in $\mathcal{S} p c_{k}$ (resp. $\mathcal{S p c} c_{k}^{\text {et }}$) is (étale) \mathbb{A}^{1}-disconnected if it is not (étale) \mathbb{A}^{1}-connected.

Unstable \mathbb{A}^{1}-0-connectivity theorem

Suppose $\mathcal{X} \in \mathcal{S} p c_{k}$ (resp. $\mathcal{S} p c_{k}^{\text {ét }}$). The canonical map

$$
\mathcal{X} \rightarrow E x_{\mathbb{A}^{1}}(\mathcal{X})
$$

(resp. $\left.\mathcal{X} \rightarrow E_{X_{\text {ét, }}^{1}}(\mathcal{X})\right)$ induces an epimorphism

$$
\pi_{0}^{s}(\mathcal{X}) \rightarrow \pi_{0}^{\mathbb{A}^{1}}(\mathcal{X})
$$

$\left(\right.$ resp. $\left.\pi_{0}^{s, e ́ t}(\mathcal{X}) \rightarrow \pi_{0}^{\mathbb{A}^{1}, \text { ét }}(\mathcal{X})\right)$.

Remark

- Suppose X is a smooth \mathbb{A}^{1}-connected k-scheme. Since Spec k is Henselian local, the map $X(\operatorname{Spec} k) \rightarrow \pi_{0}^{\mathbb{A}^{1}}(X)(\operatorname{Spec} k)$ is surjective, and we conclude that X necessarily has a k-rational point.

Remark

- Suppose X is a smooth \mathbb{A}^{1}-connected k-scheme. Since Spec k is Henselian local, the map $X(\operatorname{Spec} k) \rightarrow \pi_{0}^{\mathbb{A}^{1}}(X)($ Spec $k)$ is surjective, and we conclude that X necessarily has a k-rational point.
- The corresponding statement for smooth étale \mathbb{A}^{1}-connected schemes is false, i.e., smooth étale \mathbb{A}^{1}-connected k-schemes need not have a k-rational point if k is not separably closed.

Remark

- If M is a manifold, we can study M by analyzing each connected component separately, since each such component will again be a manifold.

Remark

- If M is a manifold, we can study M by analyzing each connected component separately, since each such component will again be a manifold.
- Not true in \mathbb{A}^{1}-homotopy theory.

Definition

A scheme $X \in \mathcal{S} m_{k}$ is called \mathbb{A}^{1}-rigid if for every $U \in \mathcal{S} m_{k}$, the map

$$
\begin{equation*}
X(U) \longrightarrow X\left(U \times \mathbb{A}^{1}\right) \tag{10}
\end{equation*}
$$

induced by pullback along the projection $U \times \mathbb{A}^{1} \rightarrow U$ is a bijection.

Definition

A scheme $X \in \mathcal{S} m_{k}$ is called \mathbb{A}^{1}-rigid if for every $U \in \mathcal{S} m_{k}$, the map

$$
\begin{equation*}
X(U) \longrightarrow X\left(U \times \mathbb{A}^{1}\right) \tag{10}
\end{equation*}
$$

induced by pullback along the projection $U \times \mathbb{A}^{1} \rightarrow U$ is a bijection.

Lemma

If $X \in \mathcal{S} m_{k}$ is \mathbb{A}^{1}-rigid, then for any $U \in \mathbf{S} \mathbf{m}_{k}$ the canonical maps

$$
\begin{align*}
& X(U) \longrightarrow[U, X]_{\mathbb{A}^{1}}, \text { and } \\
& X(U) \longrightarrow[U, X]_{\mathbb{A}^{1}, \text { ét }} \tag{11}
\end{align*}
$$

are bijections. Consequently, the canonical map $X \rightarrow \pi_{0}^{\mathbb{A}^{1}}(X)$ (resp. $\left.X \rightarrow \pi_{0}^{\mathbb{A}^{\mathbb{1}}, \text { ét }}(X)\right)$ is an isomorphism of (étale) sheaves.

Example

- Any 0 -dimensional scheme over a field k is \mathbb{A}^{1}-rigid.

Example

- Any 0 -dimensional scheme over a field k is \mathbb{A}^{1}-rigid.
- Abelian k-varieties are \mathbb{A}^{1}-rigid.

Example

- Any 0 -dimensional scheme over a field k is \mathbb{A}^{1}-rigid.
- Abelian k-varieties are \mathbb{A}^{1}-rigid.
- Smooth complex varieties that can be realized as quotients of bounded Hermitian symmetric domains by actions of discrete groups are also \mathbb{A}^{1}-rigid.

Example

- Any 0 -dimensional scheme over a field k is \mathbb{A}^{1}-rigid.
- Abelian k-varieties are \mathbb{A}^{1}-rigid.
- Smooth complex varieties that can be realized as quotients of bounded Hermitian symmetric domains by actions of discrete groups are also \mathbb{A}^{1}-rigid.
- Moreover, one can produce new examples by taking (smooth) subvarieties or taking products.

Lemma

A smooth k-scheme X is \mathbb{A}^{1}-rigid if and only if for every finitely generated separable extension L / k the map

$$
\begin{equation*}
X(L) \longrightarrow X\left(\mathbb{A}_{L}^{1}\right) \tag{12}
\end{equation*}
$$

induced by the projection $\mathbb{A}_{L}^{1} \rightarrow \operatorname{Spec} L$ is a bijection.

\mathbb{A}^{1}-homotopy classification of curves

- Two smooth proper curves of genus $g \geq 1$ are \mathbb{A}^{1}-weakly equivalent if and only if they are isomorphic.
- A smooth proper curve is \mathbb{A}^{1}-connected if and only if it is isomorphic to \mathbb{P}^{1}.

Idea of proof

- Any curve of genus $g \geq 1$ is \mathbb{A}^{1}-rigid.
- \mathbb{G}_{m} is \mathbb{A}^{1}-rigid.
- If $g=0$ and $C(\emptyset) \neq 0$, then $C \simeq \mathbb{P}^{1}$.

Definition

Let

- $\quad X \in \mathbf{S m}_{k}$,
- La finitely generated separable extension of k,
- points $x_{0}, x_{1} \in X(L)$.

An elementary \mathbb{A}^{1}-equivalence between x_{0} and x_{1} is a morphism $f: \mathbb{A}^{1} \rightarrow X$ such that

$$
f(0)=x_{0} \text { and } f(1)=x_{1} .
$$

- Two points $x, x^{\prime} \in X(L)$ are \mathbb{A}^{1}-equivalent if they are equivalent with respect to the equivalence relation generated by elementary \mathbb{A}^{1}-equivalence.
- Write $X(L) / \sim$ for the quotient of the set of L-rational points for the above equivalence relation and refer to this quotient as the set of \mathbb{A}^{1}-equivalence classes of L-points.

Definition

We say that $X \in \mathcal{S} m_{k}$ is (weakly) \mathbb{A}^{1}-chain connected if for every finitely generated separable field extension L / k (resp. separably closed field extension) the set of \mathbb{A}^{1}-equivalences classes of L-points $X(L) / \sim$ consists of exactly 1 element.

Remark

- Two k-points in $X \in \mathbf{S m}_{k}$ are called directly R-equivalent if there exists a morphism from an open subscheme of \mathbb{P}^{1} to X whose image contains the given points.

Remark

- Two k-points in $X \in \mathbf{S} \boldsymbol{m}_{k}$ are called directly R-equivalent if there exists a morphism from an open subscheme of \mathbb{P}^{1} to X whose image contains the given points.
- We write $X(k) / R$ for the quotient of $X(k)$ by the equivalence relation generated by R-equivalence.

Remark

- Two k-points in $X \in \mathbf{S m}_{k}$ are called directly R-equivalent if there exists a morphism from an open subscheme of \mathbb{P}^{1} to X whose image contains the given points.
- We write $X(k) / R$ for the quotient of $X(k)$ by the equivalence relation generated by R-equivalence.
- We say that X is separably R-trivial if for every finitely generated separable extension field L of $k, X(L) / R=*$.

Remark

- Two k-points in $X \in \mathbf{S} \boldsymbol{m}_{k}$ are called directly R-equivalent if there exists a morphism from an open subscheme of \mathbb{P}^{1} to X whose image contains the given points.
- We write $X(k) / R$ for the quotient of $X(k)$ by the equivalence relation generated by R-equivalence.
- We say that X is separably R-trivial if for every finitely generated separable extension field L of $k, X(L) / R=*$.
- If X is a smooth proper k-variety, then \mathbb{A}^{1}-chain connectedness of X is equivalent to the notion of separable R-triviality of X.

Remark

- Two k-points in $X \in \mathbf{S} \boldsymbol{m}_{k}$ are called directly R-equivalent if there exists a morphism from an open subscheme of \mathbb{P}^{1} to X whose image contains the given points.
- We write $X(k) / R$ for the quotient of $X(k)$ by the equivalence relation generated by R-equivalence.
- We say that X is separably R-trivial if for every finitely generated separable extension field L of $k, X(L) / R=*$.
- If X is a smooth proper k-variety, then \mathbb{A}^{1}-chain connectedness of X is equivalent to the notion of separable R-triviality of X.

Conjecture

\mathbb{A}^{1}-chain connectedness is equivalent to retract k-rationality.

- The algebraic n-simplex is the smooth affine k-scheme

$$
\begin{equation*}
\Delta_{\mathbb{A}^{1}}^{n}:=\operatorname{Spec} k\left[x_{0}, \ldots, x_{n}\right] /\left(\sum_{i=0}^{n} x_{i}-1\right) . \tag{13}
\end{equation*}
$$

- The algebraic n-simplex is the smooth affine k-scheme

$$
\begin{equation*}
\Delta_{\mathbb{A}^{1}}^{n}:=\operatorname{Spec} k\left[x_{0}, \ldots, x_{n}\right] /\left(\sum_{i=0}^{n} x_{i}-1\right) . \tag{13}
\end{equation*}
$$

- Note that $\Delta_{\mathbb{A}^{1}}^{n}$ is non-canonically isomorphic to \mathbb{A}_{k}^{n}.
- The algebraic n-simplex is the smooth affine k-scheme

$$
\begin{equation*}
\Delta_{\mathbb{A}^{1}}^{n}:=\operatorname{Spec} k\left[x_{0}, \ldots, x_{n}\right] /\left(\sum_{i=0}^{n} x_{i}-1\right) \tag{13}
\end{equation*}
$$

- Note that $\Delta_{\mathbb{A}^{1}}^{n}$ is non-canonically isomorphic to \mathbb{A}_{k}^{n}.
- Given $X \in \mathcal{S} m_{k}$, let $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ (resp. $\operatorname{Sing}_{*}^{\mathbb{A}^{1}, \text { ét }}(X)$) denote the Suslin-Voevodsky singular construction of X, i.e., the (étale) simplicial sheaf defined by

$$
\begin{equation*}
U \mapsto \operatorname{Hom}_{\mathbf{S m}_{k}}\left(\Delta_{\mathbb{A}^{1}}^{\bullet} \times U, X\right) . \tag{14}
\end{equation*}
$$

- The algebraic n-simplex is the smooth affine k-scheme

$$
\begin{equation*}
\Delta_{\mathbb{A}^{1}}^{n}:=\operatorname{Spec} k\left[x_{0}, \ldots, x_{n}\right] /\left(\sum_{i=0}^{n} x_{i}-1\right) . \tag{13}
\end{equation*}
$$

- Note that $\Delta_{\mathbb{A}^{1}}^{n}$ is non-canonically isomorphic to \mathbb{A}_{k}^{n}.
- Given $X \in \mathcal{S} m_{k}$, let $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ (resp. $\operatorname{Sing}_{*}^{\mathbb{A}^{1}, \text { ét }}(X)$) denote the Suslin-Voevodsky singular construction of X, i.e., the (étale) simplicial sheaf defined by

$$
\begin{equation*}
U \mapsto \operatorname{Hom}_{\mathbf{S m}_{k}}\left(\Delta_{\mathbb{A}^{1}}^{\bullet} \times U, X\right) . \tag{14}
\end{equation*}
$$

- By construction, there is a canonical morphism $X \rightarrow \operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ (resp. $\left.X \rightarrow \operatorname{Sing}_{*}^{\mathbb{A}^{1}, \text { et }}(X)\right)$ that is an \mathbb{A}^{1}-weak equivalence (in the étale topology).

Definition

For $X \in \mathcal{S} m_{k}$, set

$$
\begin{equation*}
\pi_{0}^{c h}(X):=\pi_{0}^{s}\left(\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{0}^{c h, e ́ t}(X):=\pi_{0}^{s, e^{\mathrm{et}}}\left(\operatorname{Sing}_{*}^{\mathbb{A}^{\mathbb{1}}, \text { ét }}(X)\right) \tag{16}
\end{equation*}
$$

We refer to the sheaf $\pi_{0}^{c h}(X)$ (resp. the étale sheaf $\pi_{0}^{c h, e ́ t}(X)$) as the sheaf of (étale) \mathbb{A}^{1}-chain connected components of X.

Definition

For $X \in \mathcal{S} m_{k}$, set

$$
\begin{equation*}
\pi_{0}^{c h}(X):=\pi_{0}^{s}\left(\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)\right), \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi_{0}^{c h, e ́ t}(X):=\pi_{0}^{s, e^{\mathrm{et}}}\left(\operatorname{Sing}_{*}^{\mathbb{A}^{\mathbb{1}}, \text { ét }}(X)\right) \tag{16}
\end{equation*}
$$

We refer to the sheaf $\pi_{0}^{c h}(X)$ (resp. the étale sheaf $\pi_{0}^{c h, e ́ t}(X)$) as the sheaf of (étale) \mathbb{A}^{1}-chain connected components of X.

We have (up to sheafification)

$$
\pi_{0}^{c h}(X)(U)=\frac{X(U)}{\sigma_{0} X\left(U \times \mathbb{A}^{1}\right)_{\sigma_{1}}}
$$

the quotient by the relation generated by $\sigma_{0}(t) \sim \sigma_{1}(t)$, where σ_{0} and σ_{1} are induced by the 0 - and 1 -sections $U \rightarrow U \times \mathbb{A}^{1}$.

Lemma

Suppose $X \in \mathbf{S m}_{k}$. The maps

$$
\begin{gather*}
\pi_{0}^{c h}(X) \longrightarrow \pi_{0}^{\mathbb{A}^{1}}(X) \\
\pi_{0}^{c h, e \mathrm{et}}(X) \longrightarrow \pi_{0}^{\mathrm{A}^{1}, \mathrm{et}}(X) \tag{17}
\end{gather*}
$$

are epimorphisms.

Lemma

Suppose $X \in \mathbf{S m}_{k}$. The maps

$$
\begin{align*}
\pi_{0}^{c h}(X) & \longrightarrow \pi_{0}^{\mathbb{A}^{1}}(X) \\
\pi_{0}^{c h, \text { ét }}(X) & \longrightarrow \pi_{0}^{\mathbb{A}^{1}, \text { ét }}(X) \tag{17}
\end{align*}
$$

are epimorphisms.

Proof.

Since the canonical map $X \rightarrow \operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ (resp. $\left.X \rightarrow \operatorname{Sing}_{*}^{\mathbb{A}^{1} \text {,ett }}(X)\right)$ is an \mathbb{A}^{1}-weak equivalence (in the étale topology), the result follows immediately from the unstable \mathbb{A}^{1}-connectivity theorem applied to $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ or $\operatorname{Sing}_{*}^{\mathbb{A}^{\mathbb{1}}, \text { ét }}(X)$.

Corollary

- Suppose X is a smooth variety over a field k.

Corollary

- Suppose X is a smooth variety over a field k.
- If L / k is a finitely generated separable extension (or separably closed extension) and $X(L) / \sim=*$, then $\pi_{0}^{\mathbb{A}^{1}}(X)(L)=*$.

Corollary

- Suppose X is a smooth variety over a field k.
- If L / k is a finitely generated separable extension (or separably closed extension) and $X(L) / \sim=*$, then $\pi_{0}^{\mathbb{A}^{1}}(X)(L)=*$.
- Thus, if X is weakly \mathbb{A}^{1}-chain connected, it is weakly \mathbb{A}^{1}-connected.

Proposition (Morel)

If $X \in \mathbf{S} \mathbf{m}_{k}$ is \mathbb{A}^{1}-chain connected, then X is \mathbb{A}^{1}-connected.

Idea of proof

- Nisnevich topology is crucial.
- To check triviality of all stalks, one shows $\pi_{0}^{\mathbb{A}^{1}}(X)(S)=*$ for S any henselian local scheme.
- Chain connectedness implies that the sections over the generic point of S are trivial and also that the sections over the closed point are trivial.
- Use a sandwiching argument to establish that sections over S are also trivial (thanks to the homotopy purity theorem).

Proposition (Morel)

If $X \in \mathbf{S} \mathbf{m}_{k}$ is \mathbb{A}^{1}-chain connected, then X is \mathbb{A}^{1}-connected.

Idea of proof

- Nisnevich topology is crucial.
- To check triviality of all stalks, one shows $\pi_{0}^{\mathbb{A}^{1}}(X)(S)=*$ for S any henselian local scheme.
- Chain connectedness implies that the sections over the generic point of S are trivial and also that the sections over the closed point are trivial.
- Use a sandwiching argument to establish that sections over S are also trivial (thanks to the homotopy purity theorem).

Conjecture

The epimorphism $\pi_{0}^{c h}(X) \rightarrow \pi_{0}^{\mathbb{A}^{1}}(X)$ is always an isomorphism. In particular, an object $X \in \mathbf{S m}_{k}$ is \mathbb{A}^{1}-chain connected if and only if it is \mathbb{A}^{1}-connected.
(1) True for separable extension L / k if X is smooth proper, see [AM11, Thm 2.4.3].
(1) True for separable extension L / k if X is smooth proper, see [AM11, Thm 2.4.3].
(2) A smooth proper variety is \mathbb{A}^{1}-connected if and only if it is \mathbb{A}^{1}-chain connected, see [AM11].
(1) True for separable extension L / k if X is smooth proper, see [AM11, Thm 2.4.3].
(2) A smooth proper variety is \mathbb{A}^{1}-connected if and only if it is \mathbb{A}^{1}-chain connected, see [AM11].
(3) The conjecture would follow if $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ is \mathbb{A}^{1}-local.
(1) True for separable extension L / k if X is smooth proper, see [AM11, Thm 2.4.3].
(2) A smooth proper variety is \mathbb{A}^{1}-connected if and only if it is \mathbb{A}^{1}-chain connected, see [AM11].
(3) The conjecture would follow if $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ is \mathbb{A}^{1}-local.

- True for proper non-uniruled surfaces, see [BHS15, §3].
(1) True for separable extension L / k if X is smooth proper, see [AM11, Thm 2.4.3].
(2) A smooth proper variety is \mathbb{A}^{1}-connected if and only if it is \mathbb{A}^{1}-chain connected, see [AM11].
(3) The conjecture would follow if $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ is \mathbb{A}^{1}-local.
(- True for proper non-uniruled surfaces, see [BHS15, §3].
(0) True for more general examples, see [BS20].
(1) True for separable extension L / k if X is smooth proper, see [AM11, Thm 2.4.3].
(2) A smooth proper variety is \mathbb{A}^{1}-connected if and only if it is \mathbb{A}^{1}-chain connected, see [AM11].
(3) The conjecture would follow if $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ is \mathbb{A}^{1}-local.
(- True for proper non-uniruled surfaces, see [BHS15, §3].
(6) True for more general examples, see [BS20].
(0) $\operatorname{Sing}_{*}^{\mathbb{A}^{1}}(X)$ is not always \mathbb{A}^{1}-local, see $[\mathrm{BHS} 15]$ and $[\mathrm{BS} 20]$.

Definition

An n-dimensional smooth k-variety X is covered by affine spaces if X admits an open affine cover by finitely many copies of \mathbb{A}_{k}^{n} such that the intersection of any two copies of \mathbb{A}_{k}^{n} has a k-point.

Definition

An n-dimensional smooth k-variety X is covered by affine spaces if X admits an open affine cover by finitely many copies of \mathbb{A}_{k}^{n} such that the intersection of any two copies of \mathbb{A}_{k}^{n} has a k-point.

Lemma

If X is a smooth k-variety that is covered by affine spaces, then X is \mathbb{A}^{1}-chain connected.
covered by affine spaces
\downarrow
\mathbb{A}^{1}-chain connected $\Longrightarrow \mathbb{A}^{1}$-connected \Longrightarrow étale \mathbb{A}^{1}-connected \Downarrow
weakly \mathbb{A}^{1}-chain connected \Longrightarrow weakly \mathbb{A}^{1}-connected

Thank you!

