M, N-manifold are cobacdant
$W \quad{ }_{x+2}-m \quad$ st $\quad \partial W=M U N$
W is h-cobordism if $\begin{aligned} & M \\ & N\end{aligned} \rightarrow W$ are homotopy eg $x \geqslant 5$
h. colordism theorem: if M, N are simply connected, then

$$
W=M \times[0,1]
$$

$f: X \rightarrow \mathbb{A}^{2}$ is an $\mathbb{A}^{2} \cdot h$-cobardism if f is proper, surjectice $f^{-1}(0), f^{-1}(1)$ are smooth

$$
\begin{array}{ll}
= & = \\
x_{0} & x_{1}
\end{array}
$$

$X, \hookrightarrow X$
$X_{0} \rightarrow X$ are A^{1}-weak eq
in this case, X_{0} and X_{1} are $A^{1} \cdot h$-cobordout
$X \times \mathbb{A}^{2} \rightarrow A^{1}$ is an $\mathbb{A}^{2}-h-c$ if X smooth and proper

$$
\begin{aligned}
& \text { id }\left(\begin{array}{lll}
X & \rightarrow & S_{\text {pec }} k \\
f \downarrow \text { in } \\
A^{2}=4 & \downarrow 0 \\
X \times A^{2} & \rightarrow & A^{2} \\
\downarrow & & \downarrow \\
X & \rightarrow \text { Speck }
\end{array}\right) \text { id } \\
& {\left[x \times \mathbb{A}^{\wedge}, \mathcal{Z}\right] \underset{b_{y}}{b_{i}^{*}}[x, \mathcal{Z}] \text { for } \mathscr{Z} A^{\wedge} \cdot \text { bul }} \\
& \begin{aligned}
& X \xrightarrow{f} \\
& X \times A^{1} \longrightarrow \mathscr{L} \times A^{1} \\
& \downarrow \longmapsto \\
& \text { id } \longrightarrow X
\end{aligned}
\end{aligned}
$$

to $\quad X \rightarrow X \times A^{2}$ is A^{1} - weak eq
$X \times A^{2} \rightarrow \mathbb{A}^{1}$ is an $\mathbb{A}^{1} \cdot h \cdot c$

$$
X \sim X
$$

\mathbb{A}^{\wedge}-eq Classification of rational smooth proper surfaces
vomarphism classification: $\left.\mathbb{P}^{2}, B l_{x_{1}}\left(\cdots(B)_{x_{n}}\left(\mathbb{P}^{2}\right)\right)\right]$
$\mathbb{F}_{a}, B l_{y_{1}}\left(\ldots\left(B_{y_{2}}\left(\mathbb{F}_{a}\right)\right)\right.$
On $\mathbb{P}^{1}: O(a)$ for $a \in \mathbb{Z} \quad a \geqslant 0$

$$
\begin{aligned}
& \pi: \mathbb{P}(\underbrace{G_{p^{1}} \oplus G(a)}_{M}) \rightarrow p^{1} \\
& U=\mathbb{A}^{1} \hookrightarrow \mathbb{P}^{1} \\
& M_{u} \simeq O_{u}^{\sqrt{2}} \quad 2 \cdot 1=1 \\
& \pi^{-1}(u) \simeq \mathbb{P}_{u}^{1} \simeq \mathbb{P}^{1} \times \mathbb{A}^{1} \simeq \mathbb{P}^{2} \\
& \mathbb{F}_{a}=\mathbb{P}\left(\widehat{O}_{\mathbb{R}^{2}} \oplus O_{\mathbb{P}^{2}}(a)\right) \\
& O_{p^{1}}(-a)\left(O_{p^{1}}(b) \oplus O_{p},(a)\right) \simeq O_{p+1}(b-a) \oplus O_{p 1} \\
& O_{p},(a) \times\left(O_{p} \oplus \oplus G_{p r}(-a)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{O}_{p^{1}} \oplus O_{p^{1}}(a) \rightarrow G_{p^{1}}(a) \\
& \mathbb{P}\left(O_{p^{1}}(a)\right) \longrightarrow \mathbb{P}(O \oplus G(a))=\mathbb{F}_{a} \\
& C_{a}^{\prime \prime} \text { Fact 1 } \\
& x \in C_{a}(k) \quad\left.\left.B\right|_{x}\left(\mathbb{F}_{a}\right) \approx\right|_{x^{\prime}}\left(\mathbb{F}_{a-1}\right) \\
& \text { with } x^{\prime} \notin C_{a-1}(k)
\end{aligned}
$$

Fact 2: $\left.B\right|_{x}\left(\mathbb{P}^{2}\right) \simeq \mathbb{F}_{1}$.
Chearem 3.2.1: $k=\bar{l}, S_{n}$ as the blow up of a finite collection of n arbitrary points of \mathbb{P}^{2}.
Any rational smooth proper surface is A^{1}. weal eq to $\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{p}^{2}$ ar tome S_{n}.
Proof: lit's first show that we can move a blown up pout.

Blowing up a noving point
Sroposition 3.1.7: X smooch proper variely $\therefore \mathbb{A}^{2} \hookrightarrow X$ closed imnersion

$$
\mathbb{A}^{1} \rightarrow X \times \mathbb{A}^{1} \quad \mathbb{A}_{\substack{n \\ \text { Vopen } \\ \text { empodding }}} \quad \Gamma=\text { grophof } i .
$$

$$
\Gamma \longleftrightarrow X \times \mathbb{A}^{1}
$$

the compariti $B I_{\Gamma}\left(X \times \mathbb{A}^{1}\right) \rightarrow X \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is an $\mathbb{A}^{1}-h$ cobordiom.

Drawing: for example $\mathbb{A}^{2} \leftrightarrow \mathbb{P}^{2}$

$$
\left.\left.B\right|_{x_{0}}(X) \sim B\right|_{x_{1}}(X)
$$

Proposition: 3.2.7 k is infinite X is smooth proper h. variety $X f_{1}: X_{1} \rightarrow X, f_{2}: X_{2} \rightarrow X$ proper binational and composite of iterated low ups of points. X_{1} and X_{2} are $A^{n}-e q$ if ok $P_{i c} X_{1}=r k P_{i c} X_{2}$, in this cos they are $\mathbb{A}^{1}-h$ cobardant

* and covered by fine spaces

Proof: notice that $B I_{x} X$ is tl covered by affine spaces, still a smooth proper vanity.

1. By 3.1.7, if x_{1} and x_{2} lies on a comm on $A^{1} \leadsto X$ in X, then $B l_{x_{1}}(X) \sim_{A^{2} \cdot h-c} B l_{x_{1}}(X)$
1.bis: if x_{1}, and x_{2} are not on a common line we take a chain (X covered by fine spaces $\Rightarrow X A^{2}$ - chain competed), $x_{1}=z_{0} \sim z_{1}-\cdots-z_{n}=x_{2}$
(2.) $\left.B\right|_{x_{1}}\left(\left.B\right|_{x_{2}}(X)\right)$ we can always move x_{1} out of the exceptional locus of $\left.B\right|_{x_{2}}(X)$.
2. $B l_{x_{1}}\left(\left.B\right|_{x_{2}}(X)\right)$ with $x_{1} \neq x_{2}$ in X
$\left.B\right|_{y_{1}}\left(\left.B\right|_{y_{2}}(X)\right)$ with $y_{1} \neq y_{2}$ in X
\sim stands for A? h. colorant

$$
\begin{aligned}
B l_{x_{1}}\left(B l_{x_{2}}(X)\right) & \sim B l_{y_{1}}\left(\left.B\right|_{x_{2}}(x)\right) \\
& =B l_{\left\{y_{1}, x_{2}\right\}}(X) \\
& \left.\simeq B\right|_{x_{2}}\left(B l_{y_{1}}(x)\right) \\
& \sim B l_{y_{2}}\left(B l_{y_{1}}(x)\right) \\
& =B l_{y_{1}}\left(B l_{y_{2}}(x)\right) \\
B l_{x_{1}}\left(B l_{x_{2}}(x)\right) & \sim B l_{y_{1}}\left(B y_{y_{2}}(X)\right)
\end{aligned}
$$

h. $\left.\rightarrow B\right|_{x_{1}}\left(\ldots\left(\left.B\right|_{x_{-}}(X)\right) \sim B l_{y_{1}}\left(\ldots\left(B l_{y_{x}}(X)\right)\right.\right.$
5. $\left(X_{1} \tilde{a}_{4}^{\prime} X_{2}\right) \Rightarrow\left(P_{i c} X_{1}=P_{i c} X_{2}\right)$
if \quad in $P_{i} X_{1}=n k p_{i} X_{2}$, then
the number of how ups to get X_{1} is che same as $\frac{1}{2} X_{2}$ because lowing up a paint adds a Z. summand to the Picard group
so $\quad X_{1} \sim \mathcal{A}^{1}$ h.colardeat X_{2} to $X_{1} \sim \sim_{1-e 4} X_{2}$.
Sack to the proof of Clastfication theorem if x is rational smooth proper surface

$$
\begin{align*}
& x=P^{2} \quad O_{4} \\
& x=\left.B\right|_{x_{1}}\left(\ldots (B | _ { x _ { n } } (P ^ { 2 })) \sim B | _ { x , 1 } \left(\ldots\left(\left.B\right|_{x_{0}}\left(P^{2}\right)\right) \text { which } \underset{x_{1}^{\prime} \ldots, x_{i}}{\in \mathbb{P}_{2}}\right.\right. \\
& X \quad \sim \quad S_{n}=B l_{g_{2}}\left(\cdots\left(B l_{y_{n}}\left(P^{2}\right)\right)\right. \\
& X=\left.B\right|_{x_{1}}\left(\ldots\left(\left.B\right|_{x_{n}}\left(\mathbb{F}_{\alpha}\right)\right)\right. \tag{x}
\end{align*}
$$

Lemma: $B l_{x_{1}}\left(\left.\ldots\left(B x_{x_{-}}\left(\mathbb{F}_{a}\right)\right) \sim_{A^{n}: h_{-c}} B\right|_{y_{1}}\left(\ldots\left(\left.B\right|_{y_{m}}\left(\mathbb{F}_{a_{-i}}\right)\right)\right.\right.$

$$
n \geqslant 1, a \geqslant 2
$$

Proof: $B l_{x_{m}}\left(\mathbb{F}_{a}\right) \sim B l_{x_{n}}\left(\mathbb{F}_{a}\right)$ for $x_{n}{ }^{\prime} \in C_{a}(k)$ and $\left.B\right|_{x^{-}},\left(\mathbb{F}_{a}\right) \cong B_{y_{a^{\prime}}}\left(\mathbb{F}_{a, 2}\right)$ for some $y_{n}^{\prime} \notin C_{0-1}(k)$

$$
\left.\left.\left.B\right|_{x_{n}}\left(\mathbb{F}_{a}\right) \sim B\right|_{y_{\prime^{\prime}}\left(\mathbb{F}_{a \cdot 1}\right)} \sim B\right|_{y_{n}^{\prime \prime}}\left(\mathbb{F}_{4 \cdot 2}\right) \quad y_{-1} \in C_{a-1}
$$

$$
\begin{gathered}
B l_{x_{1}}\left(\ldots (B | _ { x ^ { \prime } } (\mathbb { F } _ { a })) \simeq B | _ { x _ { 1 } } \left(\ldots\left(\left.B\right|_{y_{n^{\prime}}}\left(\mathbb{F}_{a_{-1}}\right)\right)\right.\right. \\
\left.B\right|_{x_{1}}\left(\ldots (B | _ { x _ { 1 } } (\mathbb { F } _ { a })) \quad B | _ { y _ { 1 } } \left(\ldots\left(\left.B\right|_{y_{n}}\left(\mathbb{F}_{a-1}\right)\right)\right.\right.
\end{gathered}
$$

Bach to th proof:
(X)

$$
\begin{aligned}
& \left.X \sim B\right|_{y_{1}}\left(\ldots(B)_{y_{n}}\left(\mathbb{F}_{1}\right)\right) \\
& \begin{array}{l}
B \\
B I_{x}\left(\mathbb{P}^{2}\right)
\end{array} \\
& x \sim S_{n+1} \\
& \mathbb{F}_{a} \underset{A^{\prime} \leq h}{\sim} \mathbb{F}_{b} \quad \text { if } \quad a \equiv b\{2\} \\
& \text { if } x \simeq F_{a} \\
& \begin{array}{ccc}
X \sim \mathbb{F}_{0}^{\prime} & \text { or } & \mathbb{F}_{1} \\
\mathbb{P}_{1}^{\prime \prime} \mathbb{P}^{1} & B_{x}\left(\mathbb{P}^{2}\right)
\end{array}
\end{aligned}
$$

