id $X \rightarrow Spec h$ $A^2 \rightarrow A^2$ $X \times A^2 \rightarrow A^2$ $X \rightarrow Spec h$

[X × A², Z] for Z A² local $X \xrightarrow{I} X \times A^1 \longrightarrow \mathcal{Z} \times A^1$ id X I F to X -> X × A 2 is A 2 - weak eq X×A¹ → A¹ is an A¹.h.c X~X

$$\frac{A^{\circ} \cdot eq}{\text{isomorphism}} \xrightarrow{\text{lassification}} of \text{ rational smooth proper surfaces}$$
isomorphism $\text{lassification} : \mathbb{P}^{2}, [\frac{BI_{x_{1}}(\dots (BI_{x_{n}}(\mathbb{P}^{2})))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{1}}(\dots (BI_{y_{n}}(\mathbb{F}_{n})))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{1}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{1}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\mathbb{F}_{n})]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\dots (BI_{y_{n}}(\mathbb{F}_{n}))]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\mathbb{F}_{n})]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\mathbb{F}_{n})]}{\mathbb{F}_{0}}, [\frac{BI_{y_{n}}(\mathbb{F}_{n})]}$

Blowing up a moving point Scoposition 3. 1.7: X smooth proper variety $i: A^2 \longrightarrow X$ closed immersion A^{nV} open $\Gamma = qraph of i$. $A^1 \hookrightarrow X \star A^1$ $\begin{array}{c} \Gamma & \hookrightarrow & X \times A^{1} \\ \text{the composite } & Bl_{\Gamma} (X \times A^{2}) \longrightarrow & X \times A^{2} \rightarrow & A^{1} \text{ is on } A^{2}h \end{array}$ cobordism. $\mathbb{A}^2 \hookrightarrow \mathbb{P}^2$ Drowing for example $i: A^1 \rightarrow A^2$ $\mathcal{X}_{o} = i(o)$ $x_1 = i(7)$ $B_{x_o}(X) \sim B'_{x_1}(X)$

$$\begin{array}{c} \underbrace{\Pr_{\text{reposition}} : 3.2.7 \qquad \text{le is infinite} \quad X is smooth properlive time if $f_{1} : X_{1} \rightarrow X_{1}, \quad f_{2} : X_{2} \rightarrow X_{proper}live time in all comparises of iterated llow ups of points . X_{1} andX_{2} are A^{-} eq if the Pic $X_{1} = x$ le Pic X_{2} , in this
cas they are A^{-} he cobord ant
X and covered by efficie graces
 $\underbrace{\Pr_{\text{reposition}} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2}$$$$

~ dards for
$$M^2$$
 he coloridant
 $B_{x_1}(B|_{x_2}(X)) \sim B(g_1(B|_{x_2}(X)))$
 $= Bl_{g_1,x_2}(X)$
 $= Bl_{g_1,x_2}(X)$
 $= Bl_{x_1}(B(g_1(X)))$
 $= Bl_{g_1}(Bl_{g_1}(X))$
 $= Bl_{g_1}(Bl_{g_2}(X))$
 $Bl_{x_1}(Bl_{x_2}(X)) \sim Bl_{g_1}(Bg_2(X))$
 $4. \Rightarrow Bl_{x_1}(\cdots (Bl_{x_n}(X))) \sim Bl_{g_1}(\cdots (Bl_{g_n}(X)))$
 $5. (X_1 = rh Pic X_2 + lhen)$
 $lhe number of flow ups to get X_1 is the same as$
 $\frac{1}{100} = rim adds = Z^2$ summand to the Picard group.

40 X_n
$$M^{*}h \cdot colordant$$
 X₂ to X_n F_{-eq} X₂.
Back to the proof of dathfication theorem
if X is rational smooth proper surface
X = P² O4
X = Bl_{X_n} (... (Bl_{X_n} (P²)) ~ Bl_{X_n} (... (Bl_X(P²)) with x_{1,n,n}.
EP²
X ~ S_n = Bl_{X_n} (... (Bl_{X_n} (P²)) ~ Bl_{X_n} (... (Bl_{X_n}(P²))
X = Bl_{X_n} (... (Bl_{X_n} (P²)) (X)
Lowmu: Bl_{X_n} (... (Bl_{X_n} (F_n)) (X)
Lowmu: (Bl_{X_n} (F_n)) (X)
Lowmu: (Bl_{X_n} (F_n)) (X)
Lowmu: (Bl_{X_n} (F_n)) (X)
Lowmu: (Bl_{X_n)} (X)
Lowmu: (Bl_{X_n) (X)} (X)
Lowmu: (Bl